Cho x2+y2+z2 = 2016 và x,y,z>0
Tìm GTNN của A= \(\frac{xy}{z}+\frac{xz}{y}+\frac{yz}{x}\)
cho 3 số thực dương x,y,z thỏa mãn x+y+z=xyz
tìm giá trị lớn nhất của biểu thức p=\frac{1}{\sqrt{x^2+1}}\:+\frac{1}{\sqrt{\gamma ^2+1}}+\frac{1}{\sqrt{z^2+1}}
cho x,y,z>0 và \(x+y+z=\dfrac{3}{2}\)
chứng minh rằng \(\dfrac{\sqrt{x^2+xy+y^2}}{4yz+1}+\dfrac{\sqrt{y^2+yz+z^2}}{4zx+1}+\dfrac{\sqrt{z^2+xz+x^2}}{4xy+1}\ge\dfrac{3\sqrt{3}}{4}\)
Bài 1: Cho x>0 , Tìm GTNN của A = \(\frac{3x^4+16}{x^3}\)
Bài 2: Cho 0<x<2 Tìm GTNN của A = \(\frac{9x}{2-x}+\frac{2}{x}\)
Bài 3 Cho 3 số dương x,y,z thỏa mãn x+y+z = 2
Tìm GTNN của P = \(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
Mong mọi người giúp em
Với các số dương x,y,z,t thỏa mãn x+y+z+t=4. Tìm GTNN của biểu thức A=\(\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}+\frac{1}{t^2+1}\)
### Các thánh giải giùm em bài này với ###
Với các số dương x, y, z thỏa mãn \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\). Tìm Max của:
Q= \(\dfrac{x}{\sqrt{yz\left(1+x^2\right)}}+\dfrac{y}{\sqrt{xz\left(1+y^2\right)}}+\dfrac{z}{\sqrt{xy\left(1+z^2\right)}}\)
Cho x,y,z dương. Chứng minh \(\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+zx+x^2}\ge\sqrt{3}\left(x+y+z\right)\)
Cho x, y, z dương. Chứng minh rằng: \(\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+zx+x^2}\ge\sqrt{3}.\left(x+y+z\right)\)
\(P=\dfrac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+2}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{2\sqrt{z}}{\sqrt{xz}+2\sqrt{z}+2}\)