Câu b : Tứ giác ABCD phải là hình thang thì \(EF=\dfrac{AB+CD}{2}\) ( Theo định lý đường trung bình hình thang )
Câu b : Tứ giác ABCD phải là hình thang thì \(EF=\dfrac{AB+CD}{2}\) ( Theo định lý đường trung bình hình thang )
Tứ giác ABCD có E, F theo thứ tự là trung điểm của AD, AB.
a/ CMR \(EF\le\frac{AB+CD}{2}\)
b/ Tứ giác ABCD có điều kiện gì thì \(EF=\frac{AB+CD}{2}\)
Cho tứ giác ABCD . Gọi E ; F ; I lần lượt là trung điểm của AD , BC và AC
a) Chứng minh : EI // CD và IF // AB
b) Chứng minh : \(EF\le\dfrac{AB+CD}{2}\)
c) Tứ giác ABCD phải có điều kiện gì thì \(EF=\dfrac{AB+CD}{2}\)
Cho tứ giác ABCD . Gọi E , F , I lần lượt là trung điểm AD , BC , AC . Chứng minh :
1) EI // CD và IF // AB
2) EF <= AB + CD / 2
3) Tứ giác ABCD phải có điều kiện gì thì EF = AB + CD / 2
CÁC BẠN GIẢI NHANH CHO MÌNH NHA . MÌNH ĐANG CẦN GẤP
Cho hình thang ABCD (AB // CD). Gọi E, F theo thứ tự là trung điểm của AB, CD. Gọi O là trung điểm của EF. Qua O kẻ đường thẳng song song với AB, cắt AD và BC theo thứ tự ở M và N.
a) Tứ giác EMFN là hình gì? Chúng minh.
b) Hình thang ABCD có thêm điều kiện gì thì EMFN là hình thoi?
c) Hình thang ABCD có thêm điều kiện gì thì EMFN là hình vuông?
( Vẽ hình kèm GT, KL )
giúp mình bài này với!
Bài 1: Cho tứ giác ABCD có AB=AD, CB=CD, góc C =60o , góc A=100o
a, Chứng minh AC là đường trung trực của BD.
b, Tính góc B và góc D.
Bài 3: Cho tứ giác ABCD có <B +<D=180o , CB=CD. Trên tia đối của tia DA lấy điểm E, phân giác ngoài góc A và góc B cắt tại F. Chứng minh <AEB=<C+<D2<C+<D2 và <AFB=<A+<B/2
Bài 4: Cho tứ giác ABCD có <B+<D=180o , CB=CD. Trên tia đối của tia DA lấy điểm E sao cho DE=AB. Chứng minh:
a, △ABC và △EDC bằng nhau
b, AC là phân giác của góc A
Bài 5: Cho tứ giác ABCD biết số đo của các góc A,B,C,D tỉ lệ thuận với 5,8,13,10.
a, Tính số đo các góc của tứ giác ABCD.
b,Kéo dài hai cạnh AB và CD cắt nhau tại E, kéo dài hai cạnh AD và BC cắt nhau tại F. Hai tia phân giác của góc AED và góc AFB cắt nhau tại O. Phân giác góc AFB cắt cạnh CD VÀ AB lần lượt là M và N. CM: O là trung điểm đoạn MN.
giúp mình bài này với!
Bài 1: Cho tứ giác ABCD có AB=AD, CB=CD, góc C =60o , góc A=100o
a, Chứng minh AC là đường trung trực của BD.
b, Tính góc B và góc D.
Bài 3: Cho tứ giác ABCD có <B +<D=180o , CB=CD. Trên tia đối của tia DA lấy điểm E, phân giác ngoài góc A và góc B cắt tại F. Chứng minh <AEB=\(\dfrac{< C+< D}{2}\) và <AFB=<A+<B/2
Bài 4: Cho tứ giác ABCD có <B+<D=180o , CB=CD. Trên tia đối của tia DA lấy điểm E sao cho DE=AB. Chứng minh:
a, △ABC và △EDC bằng nhau
b, AC là phân giác của góc A
Bài 5: Cho tứ giác ABCD biết số đo của các góc A,B,C,D tỉ lệ thuận với 5,8,13,10.
a, Tính số đo các góc của tứ giác ABCD.
b,Kéo dài hai cạnh AB và CD cắt nhau tại E, kéo dài hai cạnh AD và BC cắt nhau tại F. Hai tia phân giác của góc AED và góc AFB cắt nhau tại O. Phân giác góc AFB cắt cạnh CD VÀ AB lần lượt là M và N. CM: O là trung điểm đoạn MN.
Cho tứ giác ABCD có E là giao điểm của AB và CD; F là giao điểm của BC và AD. Các tia phân giác của góc E và góc F cắt nhau tại I. Chứng minh: Nếu BAD=1300; BCD = 500 thì IE vuông góc với IF (giải + vẽ hình)
Giúp tui vs bà con ơi!!!!
Cho tứ giác lồi ABCD, M, N lần lượt là trung điểm của AB, CD. H là hình chiếu
của M trên CD, K là hình chiếu của N trên AB. CMR SABCD = 1/2
( MH.CD + NK.AB) .
Cho tứ giác ABCD có E,F lần lượt là trung điểm của AD và BC. Đường thẳng EF cắt các đường thẳng AB,CD lần lượt tại M,N. Chứng minh rằng MA.NC=MB.ND