Cho tứ giác ABCD có AD=BC. Trên AB,CD lần lượt lấy các điểm M và N là trung điểm của AB và CD; E và F theo thứ tự là giao điểm của AD và BC với đường thẳng MN. Chứng minh rằng: góc AEM = góc BFM
Cho tứ giác ABCD có AB = AD, BC = CD
a) Chứng minh rằng AC là đường trung trực của đoạn thẳng BD.
b) Biết góc BDA= 110°, góc BCD= 50°. Tính góc ABC, góc ADC.
c) Gọi I là giao điểm của AC và BD, chứng minh ∆ABI = ∆ADI
Cho tứ giác ABCD có AB = AD, BC = CD
a) Chứng minh rằng AC là đường trung trực của đoạn thẳng BD.
b) Biết góc BDA = 110°, góc BCD = 50°. Tính góc ABC, ADC.
c) Gọi I là giao điểm của AC và BD, chứng minh ∆ABI = ∆ADI
Giải bài này giúp mình nha!!!
Cho tứ giác ABCD có AD=BC. Các tia DA và BC cắt nhau tại O. Gọi IK là trung điểm của AB và CD. Đường thẳng IK cắt AD,BC tại E,F. Chứng minh tam giác OEF cân.
Cho tứ giác ABCD có AC là tia phân giác góc A,BC=CD,AB<AD
a) Lấy điểm E trên cạnh AD sao cho AE=AB.Chứng minh rằng góc AEB= góc AEC
b) Chứng minh rằng góc B+ góc D=180 độ
Bài 1:Cho tứ giác ABCD.Gọi A',B',C',D' theo thứ tự là trọng tâm các tam giác BCD,ACD,ABD,ABC.Chứng minh rằng:4 đường thẳng AA',BB',CC',DD' gặp nhau tại một điểm.
Bài 2:Cho tứ giác ABCD.Hai cạnh AB,CD kéo dài cắt nhau tại E.Hai cạnh BC,AD kéo dài cắt nhau tại F.Tính góc tạo bởi 2 tia phân giác E và F theo các góc trong của tứ giác ABCD.
1. Cho tứ giác ABCD, gọi M là trung điểm của AD. N là trung điểm của BC.
Chứng minh: a) 2MN bé hơn hoặc = AB+CD
b) trong trường hợp dấu = xảy ra, tứ giác ABCD là hình gì
2. Cho tam giác abc đều, M là điểm nằm trong tam giác, qua m kẻ các đường thẳng // vs ab,//vsbc,//ac cắt ab,ac,bc tại e,d,f
Chứng minh:a, các tứ giác bfmd, cdme, aemf là hình thang cân
b, trong 3 đoạn ma,mb,mc thì đọ dài một đoạn lớn nhất nhỏ hơn tổng độ dài 2 đoạn còn lại
Giúp mình với,giải chi tiết cho mình nha!
Bài 2: Cho hình thang ABCD (AB//CD).Gọi E,F lần lượt là trung điểm của AD và BC. Gọi K là giao điểm của AC và EF
a. CM: AK = KC.
b. Biết AB = 4cm, CD = 10cm. Tính các độ dài EK, KF
Bài 3. Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA.
a. CM: Tứ giác ADME là hình bình hành.
b. Nếu tam giác ABC cân tại A thì tứ giác ADME là hình gì? Vì sao?
c. Nếu tam giác ABC vuông tại A thì tứ giác ADME là hình gì? Vì sao?
d. Trong trường hợp tam giác ABC vuông tại A, cho biết AB = 6cm, AC = 8cm, tính độ
dài AM.
Bài 4: Cho hình bình hành ABCD có AD = 2AB, Ẩ = 60°. Gọi E và F lần lượt là trung
điểm của BC và AD.
a. Chứng minh AE vuông góc BF
b. Chứng minh tứ giác BFDC là hình thang cân.
c. Lấy điểm M đối xứng của A qua B. Chứng minh tứ giác BMCD là hình chữ nhật.
d. Chứng minh M, E, D thẳng hàng.
Bài 5: Cho tam giác ABC vuông tại A có góc ABC= 60°, kẻ tia Ax song song với BC.
Trên Ax lấy điểm D sao cho AD = DC.
a. Tính các góc BAD và DAC.
b. Chứng minh tứ giác ABCD là hình thang cân.
c. Gọi E là trung điểm của BC. Chứng minh tứ giác ADEB là hình thoi.
d. Cho AC = 8cm, AB = 5cm. Tính diện tích hình thoi ABED
Cho tứ giác ABCD có M là trung điểm của AB, N là trung điểm của CD, P là điểm trên BC, Q là điểm trên AD (QA khác QD). Biết MPNQ là hình bình hành. Chứng minh: BC song song với AD