Cho đường tròn tâm O, điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Gọi I là giao điểm của OA và BC.
a) Chứng minh tam giác ABC cân.
b) Chứng minh OA vuông góc với BC.
c) Tính độ dài BI, biết OB = 6 cm; OA = 8 cm. d) Chứng minh rằng : AB 2 – OC 2 = AI 2 – IO2
Cho (O;R) và điểm M nằm ngoài đường tròn. Vẽ tiếp tuyến MA,MB với đường tròn (O),(A,B là các tiếp điểm) và cát tuyến MCD không qua O (MC<MD,AC<BC).Vẽ OI vuông góc CD (I thuộc CD).
a) Chứng minh : MAIO là tứ giác nội tiếp suy ra M,A,I,O,B cùng thuộc 1 đường tròn
b)Chứng minh: IM là tia phân giác của góc AIB
c) Gọi Q là giao điểm CD và AB. Chứng minh MC/MD = QC/QD
Từ điểm M bên ngoài đường tròn (O) vẽ tiếp tuyến MA,MB(A,B là các tiếp điểm),MO cắt AB tại H.Kẻ đường kính AC
a.Chứng minh:MO // BC
b.MC cắt đường tròn tại D.Chứng minh MH.MO = MC.MD
c.Đường thẳng kẻ qua O vuông góc với BC cắt MB tại N.Chứng minh NC là tiếp tuyến của đường tròn (O)
d.MO cắt đường tròn tại I.Chứng minh I là tâm đường tròn nội tiếp tam giác MAB
cho đường tròn (O,R), từ M nằm ngoài đường tròn (O) kẻ 2 tiếp tuyến MA,MB ( A ,B là tiếp điểm ) ,OM =2R .1 cát tuyến bất kì qua M cắt đường tròn tại C và D ( C nằm giữa M,D) . Kẻ tia phân giác của \(\widehat{CAD}\) cắt CD tại E và cắt đường tròn tại N . Gọi F là giao điểm của AB và CD . CMR:
a) OAMB nội tiếp
b) MA=ME
c) \(\dfrac{2}{CD}=\dfrac{1}{MD}+\dfrac{1}{FD}\)
Cho A nằm ngoài (O;R), từ A vẽ tiếp tuyến AB, AC (B, C là tiếp điểm) và cát tuyến ADE đến (O). I là trung điểm của DE. a) C/m: ABOC và ABIO là các tứ giác nội tiếp. b) C/m: Chứng minh AH. AO = AD. AE c) C/m: HC là tia phân giác của góc DHE.
Cho đường tròn (O) và một điểm A nằm ngoài đường tròn (O). Từ A kể tiếp tuyến AM, AN tới đường tròn (O) (M, N là các tiếp điểm)
a) Chứng minh rằng tứ giác AMON nối tiếp.
b) Vẽ cát tuyến ABC tới đường tròn (O) ( Tia AO nằm giữa AM và AC ). Chứng minh rằng: AM\(^2\)= AB. AC
c) Gọi H là giao điểm của AO và MN. Chứng minh tứ giác BHOC nội tiếp.
d) Chứng minh rằng HN là tia phân giác của BHC.
Cho đường tròn (O) và một điểm A nằm ngoài đường tròn (O). Từ A kể tiếp tuyến AM, AN tới đường tròn (O) (M, N là các tiếp điểm)
a) Chứng minh rằng tứ giác AMON nối tiếp.
b) Vẽ cát tuyến ABC tới đường tròn (O) ( Tia AO nằm giữa AM và AC ). Chứng minh rằng: AM2= AB. AC
c) Gọi H là giao điểm của AO và MN. Chứng minh tứ giác BHOC nội tiếp.
d) Chứng minh rằng HN là tia phân giác của góc BHC.
Cho đường tròn (O; R). Một đường thẳng d cắt đường tròn (O) tại hai điểm C và D. Từ một điểm I thuộc đường thẳng d, ở ngoài đường tròn (O) sao cho ID > IC, kẻ hai tiếp tuyến IA và IB tới đường tròn (O). Gọi H là trung điểm của CD.
1. Chứng minh năm điểm A, H, O, B, I cùng thuộc một đường tròn.
2. Giả sử AI = AO, khi đó tứ giác AOBI là hình gì? Tính diện tích hình tròn ngoại tiếp tứ giác AOBI?
3. Chứng minh rằng khi I di chuyển trên đường thẳng d thỏa mãn: Ở ngoài (O) và ID > IC thì AB luôn đi qua một điểm cố định.
Cho đường tròn (O;R) và điểm M cố định nằm ngoài (O;R). Từ M kẻ các tiếp tuyến MA, MB tới (O;R) (A, B là các tiếp điểm). Đường thẳng (d) bất kì qua M và cắt (O;R) tại hai điểm phân biệt C, D (C nằm giữa M và D). Gọi N là giao điểm của AB và CD.
a) Chứng minh tứ giác OAMB nội tiếp
b) Chứng minh rằng ΔANC và ΔDNB đồng dạng, ΔAMC và ΔDMA đồng dạng
c) Chứng minh: \(\dfrac{MC}{MD}=\dfrac{NC}{ND}\)