Chương 3: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN.

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phan Thị Minh Trí

Trong mặt phẳng với hệ trục tọa độ Oxy, hãy tính diện tích tam giác ABC biết rằng hai điểm H(5;5) và I(5;4) lần lượt là trực tâm và tâm đường tròn ngoại tiếp tam giác ABC và x+y-8=0 là phương trình đường thẳng chứa cạnh BC của tam giác.

Nguyễn Thái Bình
5 tháng 4 2016 lúc 21:27

Kéo dài đường cao AH lần lượt cắt BC và đường tròn ngoại tiếp tam giác ABC tại hai điển E và K, ta dễ dàng chứng minh được E là trung điểm HK

Đường cao \(AH\perp BC\) nên có phương trình \(x-y=0\), E là giao điểm của BC và AH \(\Rightarrow E\left(4;4\right)\) và H là trung điểm \(HK\Rightarrow K\left(3;3\right)\), suy ra bán kính đường tròn ngoại tiếp tam giác ABC là \(R=IK=\sqrt{5}\)

\(\Rightarrow\) phương trình đường tròn là \(\left(x-5\right)^2+\left(y-4\right)^2=5,\left(C\right)\)

Vậy hai điểm B, C là nghiệm của hệ hai phương trình đường thẳng BC và đường tròn (C) \(\Rightarrow B\left(3;5\right);C\left(6;2\right)\) và đỉnh A là nghiệm hệ của đường cao AH và đường tròn (C) \(\Rightarrow A\left(6;6\right)\)

Diện tích tam giác ABC là :

\(S_{ABC}=\frac{1}{2}d\left(A,BC\right).BC=\frac{1}{2}\frac{\left|6+6-8\right|}{\sqrt{2}}.3\sqrt{2}=6\)


Các câu hỏi tương tự
Huỳnh Trí Mỹ
Xem chi tiết
trang trương
Xem chi tiết
Nguyễn Tuấn
Xem chi tiết
Lê Nguyễn Song Toàn
Xem chi tiết
Hà Thu Phạm
Xem chi tiết
Nguyễn Hải Vân
Xem chi tiết
Slice Peace
Xem chi tiết
Gà
Xem chi tiết
T191QT1 Nguyễn Tiến Hưng
Xem chi tiết