Vì (d) vuông góc với BM nên (d): x-2y+c=0
Thay x=1 và y=2 vào (d), ta được:
c+1-4=0
hay c=3
Vì (d) vuông góc với BM nên (d): x-2y+c=0
Thay x=1 và y=2 vào (d), ta được:
c+1-4=0
hay c=3
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có phương trình các đường thẳng chứa trung tuyến và đường cao kẻ từ C lần lượt lsf y+2=0 và 3x-2y+8=0. Đường thẳng chứa trung tuyến kẻ từ A đi qua K(-18;3). Tính góc ABC biết rằng điểm A có tung độ âm và thuộc đường thẳng d: x+2y+2=0.
Trong mặt phẳng tọa độ Oxy , cho điểm I (-1;2) và đường thẳng d: x+3y+5 = 0
a) Viết phương trình đường tròn (C) có tâm I và đường kính bằng \(4\sqrt{5}\).Tìm tọa độ các giao điểm của d và (C)
b) Viết phương trình đường thằng Δ vuông góc với d và căt (C) tại hai điểm phân biệt A,B sao cho tam giác IAB tù và có diện tích bằng \(5\sqrt{3}\)
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có C(4;-1), đường cao, trung tuyến kẻ từ đỉnh A có phương trình lần lượt là d1: 2x-3y+12=0, d2: 2x+3y=0. Tìm tọa độ điểm B.
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(1;-3), phương trình đường phân giác trong đỉnh B là x+y-2=0 và phương trình đường trung tuyến hạ từ đỉnh C là x+8y-7=0. Tìm tọa độ các đỉnh B và C của tam giác ABC
Trong mặt phẳng tọa độ Oxy , cho điểm I (-1;2) và đường thẳng d: x+3y+5 = 0
a) Viết phương trình đường tròn (C) có tâm I và đường kính bằng 4√545.Tìm tọa độ các giao điểm của d và (C)
b) Viết phương trình đường thằng Δ vuông góc với d và căt (C) tại hai điểm phân biệt A,B sao cho tam giác IAB tù và có diện tích bằng 5√353
Trong mặt phẳng với hệ tọa độ Oxy, cho hình bình hành ABCD có N là trung điểm của cạnh CD và đường thẳng BN có phương trình là \(13x-10y+13=0\), điểm \(M\left(-1;2\right)\) thuộc đoạn thẳng AC sao cho AC=4AM. Gọi H là điểm đối xứng với N qua C. Tìm tọa độ các đỉnh A, B, C, D biết rằng 2AC=2AB và điểm H thuộc đường thẳng \(\Delta:2x-3y=0\)
Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC có trung điểm của cạnh BC là điểm M(3; -1), đường thẳng chứa đường co kẻ từ đỉnh B đi qua điểm E(-1;-3) và đường thẳng AC đi qua điểm F(1;3). Tìm tọa độ các đỉnh của tam giác ABC, biết rằng điểm đối xứng của đỉnh A qua tâm đường tròn ngoại tiếp tam giác ABC là điểm D(4;-2).
Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC vuông tại A và AC>AB.Gọi H là chân đường cao kẻ từ A của tam giác ABC.Trên tia HC lấy điểm D sao cho HA=HD,đường thẳng qua D vuông góc với BC cắt AC,AB lần lượt tại E(2;-2) và F.Phương trình CF:x+3y+9=0, đường thẳng BC đi qua M(5;12) và C có tung độ <-3.Xác định A,B,C.
Trong mặt phẳng với hệ trục tọa độ Oxy cho hình bình hành ABCD có góc ABC nhọn, đỉnh A(-2;-1). Gọi H, K, E lần lượt là hình chiếu vuông góc của A trên các đường thẳng BC, BD, CD. Phương trình đường tròn ngoại tiếp HKE là (C) : \(x^2+y^2+x+4y+3=0\). Tìm tọa độ các đỉnh B, C, D biết H có hoành độ âm, C có hoành độ dương và nằm trên đường thẳng \(x-y-3=0\)