Chương 3: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN.

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Minh Ngọc

Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác OAB có các đỉnh A, B thuộc đường thẳng \(\Delta:4x+3y-12=0\) và điểm K(6;6) là tâm đường tròn bằng tiếp góc 0. Gọi C là điểm nằm trên \(\Delta\) sao cho AC=AO và các điểm C, B nằm khác phía nhau so với điểm A. Biết điểm C có hoành độ bằng \(\frac{24}{5}\). Tìm tọa độ các đỉnh A, B

Trương Quang Đức
5 tháng 4 2016 lúc 14:44

C K O E H F B A D

Trên \(\Delta\) lấy điểm D sao cho à D, A nằm khác phía nhau so với B. Gọi E là giao điểm của các đường thẳng KA và OC; Gọi F là giao điểm của các đường thẳng KB và OD

Vì K là tâm đường tròn bàng tiếp góc O của tam giác OAB nên KE là phân giác của góc OAC. Mà OAC là tam giác cân tại A ( do OA = AC, theo gt) nên suy ra KE cũng là đường trung trục của OC. Do đó, E là trung điểm của OC và KC=KO

Xét tương tự đối với KF, ta cũng có F là trung điểm của OD và KD=KO

Suy ra tam giác CKD cân tại K. Do đó, hạ KH vuông góc với  \(\Delta\) , ta có H là trung điểm của CD. Như vậy :

+ A là giao của  \(\Delta\)  và đường trung trực \(d_1\) của đoạn OC (1)

+ B là giao của  \(\Delta\)  và đường trung trực \(d_2\) của đoạn OD, với D là điểm đối xứng của C qua H là hình chiếu vuông góc của K trên  \(\Delta\)  (2)

Vì \(C\in\Delta\) và có hoành độ \(x_0=\frac{24}{5}\) nên gọi \(y_0\) là tung độ của C, ta có :

\(2.\frac{24}{5}+3y_0-12=0\) suy ra \(y_0=-\frac{12}{5}\)

Từ đó, trung điểm E của OC có tọa độ là \(\left(\frac{12}{5};-\frac{6}{5}\right)\) và đường thẳng OC có phương trình \(x+2y=0\)

Suy ra phương trình của \(d_1\) là \(2x-y-6=0\)

Do đó, theo (1), tọa độ của A là nghiệm của hệ phương trình :

\(\begin{cases}4x+3y-12=0\\2x-y-6=0\end{cases}\)

Giải hệ ta có \(A=\left(3;0\right)\)

Nguyễn Quốc Cường
5 tháng 4 2016 lúc 15:58

Để tìm tọa độ đỉnh B ta làm như sau :

Gọi d là đường thẳng đi qua K(6;6) và vuông góc với \(\Delta\).

Ta có phương trình của d là : \(3x-4y+6=0\). Từ đây, do H là giao điểm của  \(\Delta\). và d nên tọa độ của H là nghiệm của hệ phương trình :

\(\begin{cases}4x+3y-12=0\\3x-4y+6=0\end{cases}\)

Giải hệ trên, ta được \(H=\left(\frac{6}{5};\frac{12}{5}\right)\) suy ta \(D=\left(-\frac{12}{5};\frac{26}{5}\right)\)

Do đó, trung điểm F của OD có tọa độ là \(\left(-\frac{6}{5};\frac{18}{5}\right)\) và đường thẳng OD có phương trình \(3x+y=0\)

Suy ra phương trình của \(d_2\) là \(x-3y+12=0\)

Do đó, theo (2), tọa độ B là nghiệm của hệ phương trình :

\(\begin{cases}4x+3y-12=0\\x-3y+12=0\end{cases}\)

Giải hệ trên ta được B=(0;4)

 


Các câu hỏi tương tự
T Huyên
Xem chi tiết
Lê Nguyễn Song Toàn
Xem chi tiết
Đỗ Đức Huy
Xem chi tiết
Cathy Trang
Xem chi tiết
Huỳnh Cẩm Tiên
Xem chi tiết
Thomas Edison
Xem chi tiết
Thành Nam Võ
Xem chi tiết
Phan Thị Minh Trí
Xem chi tiết
trang trương
Xem chi tiết