Trong mặt phẳng tọa độ Oxy cho hai đường thẳng
\(\left(\Delta_1\right)4x-3y-12=0;\left(\Delta_2\right)4x+3y-13=0\)
a) Tìm tọa độ các đỉnh của tam giác có ba cạnh lần lược nằm trên các đường thẳng \(\left(\Delta_1\right),\left(\Delta_2\right)\) và trục tung
b) Xác định tâm và bán kinh đường trong nội tiếp của tam giác nói trên
a: Tọa độ A là:
4x-3y-12=0 và 4x+3y-13=0
=>A(25/8;1/6)
Tọa độ B là:
x=0 và 4x-3y-12=0
=>x=0 và y=-4
Tọa độ C là:
x=0 và 4x+3y-13=0
=>y=13/3
b: A(25/8;1/6); B(0;-4); C(0;13/3)
\(AB=\sqrt{\left(0-\dfrac{25}{8}\right)^2+\left(-4-\dfrac{1}{6}\right)^2}=\dfrac{125}{24}\left(cm\right)\)
\(AC=\sqrt{\left(0-\dfrac{25}{8}\right)^2+\left(\dfrac{13}{3}-\dfrac{1}{6}\right)^2}=\dfrac{125}{24}\left(cm\right)\)
\(BC=\sqrt{0^2+\left(\dfrac{13}{3}+4\right)^2}=\dfrac{25}{3}\)
\(P=\dfrac{1}{2}\left(\dfrac{125}{24}+\dfrac{125}{24}+\dfrac{25}{3}\right)=\dfrac{75}{8}\)
\(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{-7}{25}\)
=>sin A=24/25
\(S_{ABC}=\dfrac{1}{2}\cdot\dfrac{24}{25}\cdot\dfrac{125}{24}\cdot\dfrac{125}{24}=\dfrac{625}{48}\)
=>r=625/48:75/8=25/18