Trong mặt phẳng Oxy , cho điểm I thuộc đường thẳng delta : x+2y-2=0 và hai điểm A(1;-1) , B(4;2) . Phương trình đường tròn (C) có tâm I và đi qua hai điểm A , B :
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A\(\left(\dfrac{4}{5},\dfrac{7}{5}\right)\), hai đường phân giác trong vẽ từ B và C có phương trình lân lượt là \(x-2y-1=0\) và \(x+3y-1=0\). Tìm tọa độ điểm A' đối xứng với A qua phân giác góc B và viết phương trình các đường thẳng chứa cạnh của tam giác.
Trong mặt phẳng Oxy , cho điểm I có tung độ dương và thuộc đường thẳng d:3x+y+4=0 . Phương trình đường tròn (C) có tâm I và tiếp xúc với các trục toạ độ là
a) \(\left(x+1\right)^{2^{ }}+\left(y+1\right)^{2^{ }}=2\)
b) \(\left(x+2\right)^{2^{ }}+\left(y-2\right)^{2^{ }}=4\)
c) \(\left(x-1\right)^{2^{ }}+\left(y-1\right)^{2^{ }}=2\)
d) \(\left(x-2\right)^{2^{ }}+\left(y+2\right)^{2^{ }}=4\)
Trong mặt phẳng Oxy , cho điểm I có tung độ dương và thuộc đường thẳng d:3x+y+4=0 . Phương trình đường tròn (C) có tâm I và tiếp xúc với các trục toạ độ là
a) \(\left(x+1\right)^{2^{ }}+\left(y+1\right)^{2^{ }}=2\)
b) \(\left(x+2\right)^{2^{ }}+\left(y-2\right)^{2^{ }}=4\)
c) \(\left(x-1\right)^{2^{ }}+\left(y-1\right)^{2^{ }}=2\)
d) \(\left(x-2\right)^{2^{ }}+\left(y+2\right)^{2^{ }}=4\)
Trên mặt phẳng tọa độ Oxy, trên các tia Ox, Oy lần lượt lấy các điểm A (a; 0) và B(0; b) thay đổi sao cho đường thẳng AB luôn tiếp xúc với đường tròn tâm O, bán kính bằng 1. Khi đó AB có độ dài nhỏ nhất bằng ?
Câu 4. Trong mặt phẳng Oxy, cho tam giác ABC có tọa độ đỉnh A(1; 2), B (3; 1) và C(5; 4). Phương trình nào sau đây là phương trình đường cao của tam giác ABC kẻ từ A.
A.5x – 6y + 7 = 0 B. 2x + 3y – 8 = 0 C. 3x – 2y – 5 = 0. D. 3x – 2y + 5 = 0
giúp e vs ạ! mai e thi r mà chẳng bt làm mấy bài dạng kiểu như này, mọi người giải chi tiết ra giùm ạ, đừng viết tắt quá e không hiểu đâu ạ! thank you very much
Trong mặt phẳng Oxy, cho 3 điểm A(2;-1),B(-4;3),C(1;-2). Viết phương trình tham số của đường thẳng đi qua C và vuông góc với đường thẳng AB .
Trong mặt phẳng Oxy , hai đường thẳng d1:\(2x-4y+1=0\) và d2:\(\left\{{}\begin{matrix}x=-1+mt\\y=3-\left(m+1\right)t\end{matrix}\right.\) vuông góc với nhau khi và chỉ khi