Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kinder

Trong mặt phẳng cho hệ tọa độ Oxy, cho tam giác ABC có đỉnh A(2; 2), B(1; -3), C(-2; 2). Điểm M thuộc trục tung sao cho \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\) nhỏ nhất có tung độ?

Hồng Phúc
26 tháng 1 2021 lúc 15:13

Gọi G là trọng tâm tam giác ABC

\(x_G=\dfrac{x_A+x_B+x_C}{3}=\dfrac{1}{3};y_G=\dfrac{y_A+y_B+y_C}{3}=\dfrac{1}{3}\)

\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|3\overrightarrow{MG}\right|=3MG\)

\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\) nhỏ nhất khi \(3MG\) nhỏ nhất

\(\Leftrightarrow M\) là hình chiếu của \(G\) trên trục tung

\(\Leftrightarrow M\left(0;\dfrac{1}{3}\right)\)

\(\Rightarrow\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\le3MG=1\)

Đẳng thức xảy ra khi \(M\left(0;\dfrac{1}{3}\right)\)

\(\Rightarrow\) Tung độ \(y_M=\dfrac{1}{3}\)


Các câu hỏi tương tự
Kinder
Xem chi tiết
Kinder
Xem chi tiết
Nguyễn Thị Thanh Hằng
Xem chi tiết
Quỳnh Anh
Xem chi tiết
vua chem gio
Xem chi tiết
Lê Quang Thiên
Xem chi tiết
Ngô Thành Chung
Xem chi tiết
Nguyễn Thị Ngọc
Xem chi tiết
Nguyễn Hiền
Xem chi tiết