Trong không gian với hệ trục toạ độ \(Oxyz\), cho mặt phẳng \(\left(P\right):x+y-z+2=0\) và hai đường thẳng \(d:\left\{{}\begin{matrix}x=1+t\\y=t\\z=2+2t\end{matrix}\right.\) và \(d':\left\{{}\begin{matrix}x=3-t'\\y=1+t'\\z=1-2t'\end{matrix}\right.\). Biết rằng có hai đường thẳng có các đặc điểm: song song với \(\left(P\right)\), cắt \(d\), \(d'\) và tạo với \(d\) góc \(30^\circ\). Gọi hai đường thẳng đó là \(\Delta_1\) và \(\Delta_2\), tính \(\cos\widehat{\left(\Delta_1;\Delta_2\right)}=?\)
A. \(\dfrac{1}{\sqrt{2}}\)
B. \(\dfrac{1}{\sqrt{5}}\)
C. \(\dfrac{1}{2}\)
D. \(\sqrt{\dfrac{2}{3}}\)
Trong không gian với hệ toạ độ \(Oxyz\), cho đường thẳng \(\Delta_m:\left\{{}\begin{matrix}x=1-m+\left(m-1\right)t\\y=3-m+\left(m+1\right)t\\z=m-mt\end{matrix}\right.\) với \(m\) là tham số và điểm \(A\left(5;3;1\right)\). Viết phương trình đường thẳng \(\Delta_m\), biết rằng \(d\left(A;\Delta_m\right)\) nhỏ nhất.
\(A.\left\{{}\begin{matrix}x=4t\\y=4-2t\\z=-t\end{matrix}\right.\)
\(B.\left\{{}\begin{matrix}x=5+4t\\y=3-2t\\z=2-t\end{matrix}\right.\)
\(C.\left\{{}\begin{matrix}x=4t\\y=4+6t\\z=-t\end{matrix}\right.\)
\(D.\left\{{}\begin{matrix}x=5+t\\y=3+t\\z=2+2t\end{matrix}\right.\)
Trong không gian Oxyz cho điểm A(-4;-2;4) và đường thẳng d :
\(\begin{cases}x=-3+2t\\y=1-t,t\in R\\z=-1+4t\end{cases}\)
Viết phương trình đường thẳng \(\Delta\) đi qua A, cắt và vuông góc với đường thẳng d
Trong mặt phẳng với hệ trục tọa độ Oxy, hãy tính diện tích tam giác ABC biết rằng hai điểm H(5;5) và I(5;4) lần lượt là trực tâm và tâm đường tròn ngoại tiếp tam giác ABC và x+y-8=0 là phương trình đường thẳng chứa cạnh BC của tam giác.
Cho 3 điểm A ( 1;-2;0 ) B ( 2;-1;1 ) C ( 1;1;0 ) D ( 0;-2;0 ). Viết phương trình mặt phẳng đi qua trọng tâm G của tam giác ABC và vuông góc với CD
Trong không gian Oxyz, Phương trình chính tắc của đường thẳng đi qua A(1;1;-2) và vuông góc với mặt phẳng (P):X+2y-z+2021=0 là ?
Cho đường thẳng d có phương trình x - 1 = y = z + 1 và đường thẳng d' xác định bởi \(\left\{{}\begin{matrix}x-y-1=1\\z=0\end{matrix}\right.\)
Gọi (S) là quỹ tích trung điểm của các đoạn thẳng MM', M tùy ý thuộc d, M' tùy ý thuộc d'. Chọn KĐ đúng:
A. (S) là mặt phẳng có pt x - y = 1
B. (S) là mặt phẳng có pt x + y = 1
C. (S) là mặt phẳng xđ bởi \(\left\{{}\begin{matrix}x-y-1=0\\z+1=0\end{matrix}\right.\)
D. (S) là mặt phẳng xđ bởi \(\left\{{}\begin{matrix}x+y-1=0\\z+1=0\end{matrix}\right.\)
Trong không gian với hệ toạ độ \(Oxyz\), cho mặt cầu \(\left(S\right)\) có phương trình \(x^2+\left(y+1\right)^2+\left(z-2\right)^2=10\) và và đường thẳng \(\Delta\) có phương trình chính tắc là \(\dfrac{x}{2}=\dfrac{y}{-1}=\dfrac{z-1}{2}\). Gọi \(\left(P\right)\) là mặt phẳng thay đổi chứa \(\Delta\). Khi \(\left(P\right)\cap\left(S\right)\) theo đường tròn có bán kính nhỏ nhất, hãy viết phương trình mặt phẳng \(\left(P\right)\) và tính bán kính đường tròn giao tuyến đó.
A. \(\left(P\right):2x-2y+3z+4=0; r=1\)
B. \(\left(P\right):x+y+4z-2=0;r=6\)
C. \(\left(P\right):2x+2y-z+1=0;r=3\)
D. \(\left(P\right):3x-y+2z-1=0;r=4\)
Trong không gian Oxyz, cho đường thẳng \(d:\dfrac{x-1}{2}=\dfrac{y-2}{2}=\dfrac{z}{1}\) và hai điểm \(A\left(1;-1;1\right)\), \(B\left(4;2;-2\right)\). Gọi Δ là đường thẳng đi qua \(A\) và vuông góc với \(d\) sao cho khoảng cách từ điểm \(B\) đến Δ là nhỏ nhất. Phương trình đường thẳng Δ là:
A. \(\dfrac{x-1}{-1}=\dfrac{y+1}{1}=\dfrac{z-1}{4}\) B. \(\dfrac{x-1}{1}=\dfrac{y+1}{1}=\dfrac{z-1}{4}\)
C. \(\dfrac{x-1}{1}=\dfrac{y+1}{-1}=\dfrac{z-1}{4}\) D. \(\dfrac{x-1}{1}=\dfrac{y+1}{1}=\dfrac{z-1}{-4}\)