Phương trình d: \(\left\{{}\begin{matrix}x=1+\left(2m+1\right)t\\y=-3+2t\\z=-1+\left(m-2\right)t\end{matrix}\right.\)
\(\overrightarrow{AB}=\left(-1;0;1\right)\) ; \(\overrightarrow{n_{\left(P\right)}}=\left(1;1;1\right)\); \(\overrightarrow{u_d}=\left(2m+1;2;m-2\right)\)
\(\Rightarrow\overrightarrow{a}=\left[\overrightarrow{n_{\left(p\right)}};\overrightarrow{u_d}\right]=\left(m-4;m+3;1-2m\right)\)
Để AB vuông góc hình chiếu d lên (P)
\(\Rightarrow\overrightarrow{a}=k.\overrightarrow{AB}\Rightarrow\left(m-4;m+3;1-2m\right)=\left(-k;0;k\right)\Rightarrow m=-3\)