Lấy A(5;4) \(\in\Delta\)
Dễ thấy : \(\Delta\) // \(\Delta\)' . Suy ra : d(\(\Delta;\Delta\)') = d(A;\(\Delta\)') = \(\dfrac{\left|3.5-4-1\right|}{\sqrt{3^2+\left(-1\right)^2}}=\dfrac{10}{\sqrt{10}}=\sqrt{10}\)
Chọn D
Lấy A(5;4) \(\in\Delta\)
Dễ thấy : \(\Delta\) // \(\Delta\)' . Suy ra : d(\(\Delta;\Delta\)') = d(A;\(\Delta\)') = \(\dfrac{\left|3.5-4-1\right|}{\sqrt{3^2+\left(-1\right)^2}}=\dfrac{10}{\sqrt{10}}=\sqrt{10}\)
Chọn D
Trong mặt phẳng tọa độ Oxy, cho các đường thẳng \(\Delta_1:x-2y-3=0\) và \(\Delta_2:x+y+1=0\). Tìm tọa độ điểm M thuộc đường thẳng \(\Delta_1\) sao cho khoảng cách từ điểm M đến đường thẳng \(\Delta_2\) bằng \(\dfrac{1}{\sqrt{2}}\)
1. Trong mặt phẳng toạ độ oxy, cho 2 đường thẳng delta :x+2y+4=0 và d: 2x-y+3=0. Đường tròn tâm I thuộc d cắt Ox tại A và B, cắt trục Oy tại C và D sao cho AB=CD=2. Tính khoảng cách từ điểm I đến đường thăng delta
2. trong mặt phẳng toạ độ oxy, cho tứ giác ABCD với AB:3x-4y+4=0, BC: 5+12y-52=0, CD: 5x-12y-4=0, AD:3x+4y-12=0. tìm điểm I nằm trong tứ giác ABCD sao cho d(I, AB)=d(I,BC)=d(I,CD)=d(I,DA)
Cho hai đường thẳng (d): 2x-y-2=0 và (d’): 4x-2y+6=0.Khoảng cách giữa hai đường thẳng là:
\(A,-\sqrt{5}\)
\(B,2\sqrt{5}\)
\(C\sqrt{5}\)
D.5
Trong mặt phẳng Oxy cho tam giác ABC cân tại A có \(A\left(-1;4\right)\) và các đỉnh B, C thuộc đường thẳng \(\Delta:x-y-4=0\)
a) Tính khoảng các từ A đến đường thẳng \(\Delta\)
b) Xác định tọa dộ các điểm B và C biết diện tích tam giác ABC bằng 18
trong mặt phẳng tọa độ Oxy cho đường tròn (c): \(x^2+y^2+2x-6y+5=0.\) gọi \(\Delta\) là tiếp tuyến của (c) tại điểm A(0;1).tìm pt tổng quát của \(\Delta\)
Trong mặt phẳng tọa đọ Oxy, xét tam giác ABC vuông tại A, phương trình đường thẳng BC là : \(\sqrt{3}x-y-\sqrt{3}\), các đỉnh A và B thuộc trục hoành và bán kính đường tròn nội tiếp tam giác bằng 2. Tìm tọa độ trọng tâm G của tam giác ABC
bài 1 : giải các phương trình sau
a / \(\sqrt{3x+10}-\sqrt{x+2}=\sqrt{3x}-2\)
b/ \(x^2-3x+\sqrt{x^2-3x+2}=10\)
c/ 3\(\sqrt{x^2-5x+10}=5x-x^2\)
d/ (x+4)(x-4)+3\(\sqrt{x^2-x+3}+5=0\)
Trong một mặt phẳng Oxy cho điểm M(6;0) và đường thẳng \(\left(\Delta\right)\) : x+2y-9=0
a,Tính khoảng cách từ M đến \(\left(\Delta\right)\)
b, Viết phương trình đường tròn tâm M và tiếp xúc với \(\left(\Delta\right)\)
Trong mặt phẳng tọa độ Oxy cho đường tròn (C) : \(x^2+y^2+4x+4y+6=0\) và đường thẳng \(\Delta:x+my-2m+3=0\) với m là tham số thực :
a) Tìm tọa độ tâm I và tính bán kính R của đường tròn (C)
b) Tìm m để \(\Delta\) cắt (C) tại hai điểm phân biệt sao cho diện tích tam giác IAB đạt giá trị lớn nhất