Chương 4: SỐ PHỨC

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
AllesKlar

Trên tập hợp các số phức, xét phương trình z2 - 2mz + 8m -12 = 0 (m là tham số thực). Có bai nhiều giá trị nguyên của m để phương trình đó có hai nghiệm phân biệt z1, z2 thỏa mản |z1| = |z2|?

A. 5                 B. 6             C. 3                 D. 4

Mình cần một câu trả lời cực kì chi tiết ạ, mình cảm ơn trước

undefined

Nguyễn Việt Lâm
9 tháng 4 2022 lúc 22:26

\(\Delta'=m^2-8m+12\)

TH1: \(\Delta'< 0\Rightarrow\) phương trình có 2 nghiệm phức \(z_1;z_2\)

Do \(z_1=m-\sqrt[]{\Delta'};z_2=m+\sqrt{\Delta'}\Rightarrow z_1;z_2\) luôn luôn là 2 số phức liên hợp

\(\Rightarrow\left|z_1\right|=\left|z_2\right|\) luôn đúng khi \(m^2-8m+12< 0\)

\(\Rightarrow2< m< 6\Rightarrow m=\left\{3;4;5\right\}\)

TH2: \(\Delta'=0\Rightarrow m^2-8m+12=0\Rightarrow m=\left\{2;6\right\}\) pt có nghiệm kép (ktm)

TH3: \(\Delta'>0\Rightarrow\left[{}\begin{matrix}m>6\\m< 2\end{matrix}\right.\)

Pt có 2 nghiệm thực phân biệt, để \(\left|z_1\right|=\left|z_2\right|\Rightarrow\left[{}\begin{matrix}z_1=z_2\left(loại\right)\\z_1=-z_2\end{matrix}\right.\)

\(\Rightarrow z_1+z_2=0\Rightarrow2m=0\Rightarrow m=0\)

Vậy \(m=\left\{0;3;4;5\right\}\) có 4 giá trị nguyên của m


Các câu hỏi tương tự
Sonyeondan Bangtan
Xem chi tiết
vvvvvvvv
Xem chi tiết
Nguyễn Linh
Xem chi tiết
Dao Th Anh
Xem chi tiết
AllesKlar
Xem chi tiết
Duc thanh Pham
Xem chi tiết
Phương Anh
Xem chi tiết
Phạm Văn Thiệu
Xem chi tiết
Hoàng Nhung
Xem chi tiết