trên cung nhỏ BC của đ tròn ngoai tiếp tam giác đều ABC lấy 1 điểm P tùy ý, gọi Q là giao điểm của AP và BC
a) cm BC^2 =AP.AQ
b) trên AP lấy Điểm M sao cho PM=PB. cm BP+PC=AP
c) cm 1/PQ=1/PB+1/PC
GIÚP MK VS CÁC CẬU ƠI
MK CẦN GẤPPPPP
Trên cung nhỏ BC của đường tròn ngoại tiếp tam giác đều ABC lấy một điểm P tuỳ ý . Gọi Q là giao điểm của AP và BC a) Chứng minh BC^2= AP . AQ .
b) Trên AP lấy điểm M sao cho PM = PB . Chứng minh BP+PC= AP.
c)Chứngminh 1/PQ =1/ PB + 1/PC
giúp mình với ạ, mình cảm ơn
tam giác ABC có diện tích =120 cm^2, trên đoạn BC lấy M sao cho CM=2BM, trên đoạn AC lấy N sao cho AN=3CN, trên AB lấy P sao cho PA=PB. Diện tích của tam giác có 3 đỉnh là giao 3 đoạn thẳng AM,BN,CP là
Cho tam giác AB cân tại A nội tiếp đường tròn tâm O. Gọi M;N là hai điểm lần lượt thuộc các đường thẳng AB và AC sao cho MN=AB=AC. Gọi P là giao điểm của MN và (O), Q là 1 điểm thuộc AP sao cho QM+QN=AP. Chứng minh rằng 4 điểm A;M;Q;N cùng thuộc một đường tròn.
cho nửa đg tròn (O;R) đường kính AB. Vẽ tiếp tuyến Ax (Ax và nửa đg tròn cùng thuộc nửa mặt phẳng bở AB ) , trên Ax lấy điểm P sao cho AP > R . Vẽ tiếp tuyến PE với nửa đg tròn (E là tiếp điểm ) đường thẳng PE giao AB tại F
a, CM : P,A,E,O cùng thc 1 đường tròn
b, CM: PO // BE
c, qua O kẻ đường thẳng vuôn góc OP cắt PE tại M : CM: EM.PF=PE.MF
cho tam giác ABC (AC<BC) nội tiếp đg tròn tâm O đg kính AB. kẻ CH vuông góc với AB(H thuộc AB). trên cung nhỏ BC lấy điểm E bất kì, gọi giao điểm của AE với CH là F
1, chứng minh tứ giác HFEB nội tiếp đg tròn
2, chứng minh AC2 = AE.AF
3, gọi I là giao điểm của BC với AE,K là hình chiếu vuông góc của I trên AB tìm vị trí điểm E trên cung nhỉ BC để KE + KC đạt giá trị lớn nhất
Cho tam giác ABC vg tại A, trung tuyến AM, đường cao AH. Trên cùng một nửa mặt phẳng có chứa điểm A vẽ Bx và Cy vg góc vs BC.
Qua A kẻ đg thẳng vg góc vs AM cắt Bx và Cy lần lượt tại P và Q. CM
a, AP=BP và AQ=CQ
b,PC đi qua tđiểm AH
c, Khi BC cố định, BC=2a, điểm A chuyển động sao cho góc BAC =90, tìm vị trí của H trên đthẳng BC để diện tích tam giác ABH đạt GTLN. Tìm GTLN đó
Cho đường tròn (O; R) có dây BC cố định không đi qua tâm. Trên cung lớn BC lấy điểm A sao cho tam giác ABC nhọn. Đường cao BM và CN của tam giác ABC cắt nhau tại H.
a) Chứng minh rằng tứ giác ANHM nội tiếp
b) Chứng minh rằng : BN.BA + CM. CA = BC2
cho tam giác ABCvuông tai A đường cao AH chia cạnh huyền BC thành 2 đoạn BH=3,6cn và
HC= 6,4cm trên cạnh AC lấy điểm M (M≠A,M≠C) kẻ AD vuông góc với MB tại D
1,TÍNH AB . AC .GÓC B .GÓC C(làm tròn đến phút)
2 cm BD*BM=BH*BC
3 CM 4 điểm A B C D cùng thuộc 1 đường tròn. CM AC là tiếp tuyến của đường tròn đó