Cho hình vuông ABCD cạnh a. Gọi I là trung điểm của AB. Gọi M là điểm đối xứng của D qua C. Gọi P là điểm đối xứng của M qua D. Trên tia DA lấy điểm Q sao cho ΔPDQ ∼ ΔIAD. Trên tia BC lấy điểm N sao cho ΔMCN ∼ ΔIAD.
a) Tứ giác MNPQ là hình gì?
b) Đường thẳng DI cắt PN tại E, cắt QM tại F.
Chứng minh: EF = \(\dfrac{MN+PQ}{2}\)
c) Chứng minh AQPN là hình bình hành.
d) Gọi S là giao điểm của PN và QM. Gọi T là giao điểm của QI và DC, R là trung điểm của PQ. Chứng minh: S, T, R thẳng hàng.
Cho hình chữ nhật ABCD (AB < BC) có O là giao điểm của hai đường chéo. Trên tia đối của tia CD lấy
điểm E sao cho CE = CD. Gọi F là hình chiếu của của D trên BE ; I là giao điểm của AB và CF ; K là giao điểm
của AF và BC. Chứng minh rằng ba điểm O, K, I thẳng hàng
Cho ΔABC vuông ở A. Điểm H là trung điểm của BC.Kẻ HD⊥AB và HE⊥AC (D ϵ AB, E ϵ AC)
a)Chứng minh tứ giác AEHD là hình chữ nhật.
b)Tính SAEHD biết AE=3cm, AH =5cm
c)Gọi P là điểm đối xứng của H qua AB. Chứng minh AH//BP
d)Trên tia đối của EH lấy Q sao cho QE=EH. Chứng minh A là trung điểm của đoạn thẳng PQ
Cho tam giác AEC vuông tại A. Từ điểm O trên cạnh BE kẻ đường vuông góc với BE, cắt tia đối của tia AB ở F, cắt AB ở D. Tia phân giác của góc E cắt AB, CD lần lượt ở M,P, tia phân giác của góc F cắt BC, DA lần lượt ở N và Q.
Chứng minh:
a) EM vuông góc với FN.
b) Tứ giác MPNQ là hình thoi
Cho hình vuông ABCD và một điểm E bất kì trên cạnh BC. Kẻ tia Ax vuông góc với AE cắt CD tại F. Kẻ trung tuyến AI của ∆AFE và kéo dài CD tại K. Qua E kẻ đường thẳng song song cới AB cắt AI tại G:
Chứng minh AE=AF
Cho tam giác ABC vuông cân tại A. Trên cạnh AC lấy M bất kì (M khác A,C) . Trên cạnh AB lấy E sao cho AE=CM. Gọi O là trung điểm cạnh BC
a, CM tam giác OEM vuông cân
b, Đường thẳng qua A và song song với ME, cắt tia BM tại N. Chứng minh CN _|_ AC
c, Gọi H là giao điểm của OM và AN. Chứng minh rằng tích AH.AN không phụ thuộc vào vị trí M trên cạnh AC
Cho tam giác ABC vuông tại A. Trên cạnh AB lấy điểm M bất kì. Kẻ MN ⊥ BC.
a) Chứng minh: BM.BA=BN.BC
b)Gọi I là giao điểm của AN và CM. Chứng minh IA.IN= IC.IM
c) Gọi E là giao điểm của MN và AC. Lấy điểm F trên tia đối của tia MC sao cho
CN.CB=CM.CF. Chứng minh: B,E,F thẳng hàng
Cho tam giác ABC vuông tại A, AB = 6cm, AC = 10cm. Trên cạnh AB lấy điểm D sao cho BD = 2cm. Kẻ DE vuông góc AB ( E thuộc BC). Gọi F là hình chiếu của E trên AC.
1.Cm DF = AE
2. Trên tia FC lấy Q sao cho FQ = DE. Gọi Mlaf giao điểm của DQ và EF. Gọi O là giao điểm AE và DF . Cm OM // AC.
3. vẽ G sao cho E và C đối xứng với nhau qua G . tính S tam giác OEG