1/ a. Chứng minh công thức Hê-rông tính diện tích tam giác theo 3 cạnh a,b,c S=\(\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\) (p là nửa chu vi)
b. Áp dụng chứng minh rằng nếu \(S=\dfrac{1}{4}\left(a+b-c\right)\left(a+c-b\right)\) thì tam giác đó là tam giác vuông
2/ Cho tứ giác ABCD. Lấy \(M,N\in AB\) sao cho AM=MN=NB. Lấy \(E,F\in BC\) sao cho BE=EF=FC. Lấy \(P,Q\in CD\) sao cho CP=PQ=QD. Lấy \(G,H\in AD\) sao cho DG=GH=HA. Gọi A',B' là giao điểm của MQ và NP với EH, C',D' là giao điểm của MQ và NP với FG. Chứng minh rằng
a. \(S_{MNPQ}=\dfrac{1}{3}S_{ABCD}\) b. \(S_{A'B'C'D'}=\dfrac{1}{9}S_{ABCD}\)
3/ Lấy M tùy ý nằm trong tam giác ABC. Gọi D,E,F là hình chiếu của M trên BC,AC,AB. Đặt BC=a,AC=b,AB=c,MD=x,ME=y,MF=z. Chứng minh rằng
a. ax+by+cz=2S (S=Sabc)
b. \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}\ge\dfrac{2p^2}{S}\) (\(p=\dfrac{a+b+c}{2}\) )
Bài 3: Cho tam giác ABC nhọn, đường cao AH. Gọi M, N lần lượt là trung điểm của AB, AC. Qua B kẻ đường thẳng song song với AC cắt tia NM tạo D
a. CM tứ giác BDNC là HBH
b. Tứ giác BDNH là hình gì? Vì sao?
c. Gọi K là điểm đối xứng của H qua N. Qua N kẻ đường thẳng song song với HM cắt DK tại E. Chứng minh DE = 2EK
Cho ABC sao cho tồn tại các điểm M,N lần lượt trên 2 cạnh AB,BC sao cho 2BM/AN =BN/CN và góc BNM = góc ANC . Gọi P là trung điểm AM,Q là giao điểm AN và CP.Chứng minh:
a,MN // CP
b, Tam giác AQC cân tại Q
c, Tam giác ABC vuông tại C
Cho hình thang ABCD . Hai đg chéo cắt AC,BD cắt nhau tại O . CMR
a, \(S_{AOD}=S_{BOC}\)
b, \(\dfrac{S_{AOB}}{S_{SOD}}=\dfrac{OB}{OD}\)
c, \(S_{AOB}.S_{DOC=}\left(S_{AOD}\right)^2_{ }\)
d, Cho \(S_{AOB}=9cm^2\)
\(S_{DOC}=25cm^2\)
Tính \(S_{ABCD}\)
Cho ΔABC vuông tại A (AB < AC). Gọi I là trung điểm của BC. Qua I vẽ IM ⊥ AB tại M và IN ⊥ AC tại N.
a) Tứ giác AMIN là hình gì? Vì sao?
b) Gọi D là điểm đối xứng của I qua N. C/m: ADCI là hình thoi.
c) Đường thẳng BN cắt DC tại K. C/m: \(\dfrac{DK}{DC}\) = \(\dfrac{1}{3}\).
Cho tam giác ABC sao cho tồn tại các điểm M,N lần lượt trên 2 cạnh AB,BC sao cho 2\(\frac{BM}{AN}\)=\(\frac{BN}{CN}\)và\(\widehat{BNM}\)=\(\widehat{ANC}\).Gọi P là trung điểm AM,Q là giao điểm AN với CP.
a,Chứng minh MN // CP
b,Chứng minh tam giác AQC cân tại Q
c,Chứng minh tam giác ABC vuông tại C
Cho hình thang ABCD, E, F, G, H lần lượt là trung điểm của AB, BC, CD, AD. Chứng minh rằng \(S_{EFGH}=\dfrac{1}{2}S_{ABCD}\).
Cho tam giác ABC cân tại A , đường cao AH . Gọi O là trung điểm của Ah , BO cắt Ac tại N , CO cắt AB tại M . Chứng minh :
SAMON=\(\dfrac{1}{6}\)SABC