Dễ thấy nếu a;b;c;d>0 mà \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}< 1\Leftrightarrow a;b;c;d>1\)(1)
Xét \(\dfrac{1}{x+y+\sqrt{x^2+y^2}}+\dfrac{1}{x+y-\sqrt{x^2+y^2}}=\dfrac{1}{x}+\dfrac{1}{y}\\ \)
Như vậy, qua các phép biến đổi, tổng nghịch đảo các số trên bảng không thay đổi.
Theo (1) suy ra ko bao h xuất hiện số nhỏ hơn 1.
Như vậy, qua các phép biến đổi, tổng nghịch đảo các số trên bảng không thay đổi. Vì 1 1 1 1 19 1 3 4 5 6 20 + + + = < nên qua các lần biến đổi, tổng nghịch đảo các số trên bảng vẫn nhỏ hơn 1. Do các số trên bảng qua các phép biến đổi đều dương nên từ đây suy ra không có số nào nhỏ hơn 1. Như vậy, qua các phép biến đổi, tổng nghịch đảo các số trên bảng không thay đổi. Vì 1 1 1 1 19 1 3 4 5 6 20 + + + = < nên qua các lần biến đổi, tổng nghịch đảo các số trên bảng vẫn nhỏ hơn 1. Do các số trên bảng qua các phép biến đổi đều dương nên từ đây suy ra không có số nào nhỏ hơn 1. Như vậy, qua các phép biến đổi, tổng nghịch đảo các số trên bảng không thay đổi. Vì 1 1 1 1 19 1 3 4 5 6 20 + + + = < nên qua các lần biến đổi, tổng nghịch đảo các số trên bảng vẫn nhỏ hơn 1. Do các số trên bảng qua các phép biến đổi đều dương nên từ đây suy ra không có số nào nhỏ hơn 1.