cho tam giác ABC và điểm K tùy ý nằm trong tam giác. Gọi M,N,P lần lượt là 3 điểm nằm trên các đoạn thẳng BC,CA,AB sao cho AM,BN,CP cùng đi qua K. CM : \(\frac{AK}{KM}=\frac{AP}{BP}+\frac{AM}{NC}\)
tam giác ABC có diện tích =120 cm^2, trên đoạn BC lấy M sao cho CM=2BM, trên đoạn AC lấy N sao cho AN=3CN, trên AB lấy P sao cho PA=PB. Diện tích của tam giác có 3 đỉnh là giao 3 đoạn thẳng AM,BN,CP là
Cho tam giác ABC có diện tích S, trên các cạnh AB, BC, CA lấy các điểm M,N,P sao cho: AM/MB=BN/NC=CP/PA = k.
1- tính diện tích tam giác MNP theo k và S.
2- Với giá trị nào của k thì diện tích tam giác MNP nhỏ nhất. tìm giá trị nhỏ nhất đó.
Bài 1: Cho tam giác ABC, các điểm M, N, P lần lượt thuộc các cạnh BC, CA, AC sao cho \(\frac{MB}{MC}=\frac{NC}{NA}=\frac{PA}{PB}=k>0\). Tìm \(min_{S_{MNP}}\).
Cho tam giác đều ABC và O là một điểm nằm trong tam giác. Gọi M, N, P lần lượt là giao điểm của AO, BO, CO với BC, CA, AB. Chứng minh rằng:
a) \(\frac{1}{AM}+\frac{1}{BN}+\frac{1}{CP}\le\frac{1}{3}\left(\frac{1}{OM}+\frac{1}{ON}+\frac{1}{OP}\right)\)
b) \(\frac{1}{AM}+\frac{1}{BN}+\frac{1}{CP}\le\frac{2}{3}\left(\frac{1}{OA}+\frac{1}{OB}+\frac{1}{OC}\right)\).
Cho hình thoi ABCD có góc ABC=60°.Trên cạnh DC lấy điểm M sao cho góc MAD=15°Tia AM cắt BC tại N
a) CMR:1/AM^2+1/AN^2=4/3AB^2
b) Trên cạnh AB lấy điểm Q Kẻ NQ cắt AC tại P CMR: BN/BQ-CN/CP ko đổi khi Q di chuyển trên AB
Một số bài toán áp dụng định lý Ceva,Menelaus và Ptoleme:
1. Trên các cạnh BC,CA,AB của ΔABC lần lượt lấy các điểm \(A_1,B_1,C_1\) sao cho \(AA_1,BB_1,CC_1\) đồng quy tại O. Đường thẳng qua O song song với AC cắt \(A_1B_1,B_1C_1\) tương ứng tại K,M. Cmr: OM=OK
2.Cho 2 đường tròn (O) và (O') cắt nhau tại A và B sao cho OA⊥OA. OO' cắt 2 đg tròn tại C,D,E,F sao cho các điểm C,O,E,D,O',F nằm trên 1 đg thẳng theo thứ tự đó. BE cắt (O) tại điểm thứ 2 là K cà cắt CA tại M. BD cắt (O') tại điểm thứ 2 là L và cắt AF tại N. Cm: \(\frac{KE}{KM}\cdot\frac{LN}{LD}=\frac{O'E}{OD}\)
3. Gọi M,N là các điểm bên trog ΔABC sao cho \(\widehat{MAB}=\widehat{NAC};\widehat{MBA}=\widehat{NBC}\). Cm: \(\frac{AM\cdot AN}{AC\cdot AC}+\frac{BM\cdot BN}{AB\cdot BC}+\frac{CM\cdot CN}{CA\cdot BC}=1\)
cho tam giác ABC, AB>AC , lấy điểm M,N lần lượt trên cạnh AB,AC sao cho \(AM=\frac{1}{3}AB,AN=\frac{1}{3}AC\) . gọi O là giao điểm của BN và CM , F là giao điểm của AO và BC , vẽ \(AI\perp BC\) tại I , \(OL\perp BC\) tại L , \(BD\perp FA\) tại D , \(CE\perp FA\) tại E.
So sánh CE với BD , OL với IA , OA với FO
Cho \(\Delta ABC\) vuông cân tại A. Trên AC lấy điểm M sao cho MC : MA = 1:3. Kẻ đường thẳng vuông góc với AC tại C cắt BM tại K .
a, C/minh: \(\frac{1}{AB^2}=\frac{1}{BM^2}+\frac{1}{BK^2}\)
b, Biết BM = 12cm. Tính các cạnh của \(\Delta MCK\)