Hình như sai đề r kìa bn . sao K lại là T.Điểm của GK
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Hình như sai đề r kìa bn . sao K lại là T.Điểm của GK
Cho △ABC, các đường trung tuyến Bd & CE cắt nhau ở G. Gọi I, K theo thứ tự là trung điểm của GB, GC . CMR : DE // IK & DE = IK
Cho tam giác ABC, các đường trung tuyến BD, CE. Gọi M, N theo thứ tự là trung điểm của BE, CD. Gọi I, K theo thứ tự là giao điểm của MN với BD, CE.
Chứng minh rằng
a) EDCB là hình thang
b) I là trung điểm của BD và K là trung điểm của CE
c) MI = IK = KN
Cho tam giác nhọn ABC, trực tâm H. Gọi M là trung điểm của BC. Đường thẳng qua H và vuông góc với MH cắt AB và AC theo thứ tự ở I và K.
a) Qua C kẻ đường thẳng song song với IK, cắt AH và AB theo thứ tự ở N và D. Chứng minh rằng NC = ND.
b) Chứng minh rằng HI = HK.
Cho tam giác ABC có 2 đường trung tuyến BD,CE cắt nhau ở G
Gọi I , K theo thứ tự là trung điểm GB và GC
C/m IE // DK và IE = DK
1.Cho hình thang ABCD (AB // CD). Hai đường chéo AC và BD cắt nhau tại O. Đường thẳng a qua O và song song với đáy của hình thang cắt các cạnh AD, BC theo thứ tự tại E và F . Chứng minh rằng OE = OF 2.a) Cho tam giác ABC với đường trung tuyến AM và đường phân giác trong AD. Tính diện tích tam giác ADM, biết AB = m, AC = n (n > m) và diện tích tam giác ABC là S. b) Khi cho n = 7cm, m = 3cm, hỏi rằng diện tích tam giác ADM chiếm bao nhiêu phần trăm diện tích tam giác ABC?
cho tam giác abc và trung tuyến bm, cn cắt nhau tại g trên bc lấy dc sao cho bd/dc = 1/3 qua d kẻ đường thẳng song song với bm cn thứ tự tại i k.
a) chứng minh EF//PQ, b)chứng minh QI=Ik=KP, c) tính tỉ số giữa S tam giác DPQ và S tứ giác DEGFBài 6: Cho hình thang ABCD có hai đáy là AB và CD. Một đường thẳng song song với AB cắt các cạnh bên AD, BC theo thứ tự ở E và F.
a) Chứng minh ED/AD + BF/BC = 1
b) Các đường chéo của hình thang cắt nhau tại O. Chứng minh OA.OD = OB.OC.
Bài 7: Cho tam giác ABC nhọn, M là trung điểm của BC, E thuộc đoạn thẳng MC. Qua E kẻ đường thẳng song song với AC cắt AB ở D, cắt AM ở K. Qua E kẻ đường thẳng song song với AB cắt AC ở F.
a) Chứng minh CF = DK
b) Gọi H là trực tâm của tam giác ABC. Đường thẳng qua H vuông góc với MH cắt AB và AC theo thứ tự ở I và K’. Qua C kẻ đường thẳng song song với IK’, cắt AH và AB theo thứ tự ở N và P. Chứng minh NC = NP và HI = HK’.
Bài 8: Cho tam giác ABC, điểm M bất kì trên cạnh AB. Qua M kẻ đường thẳng song song với BC cắt AC ở N biết AM = 11 cm, MB = 8 cm, AC = 38 cm. Tính độ dài các đoạn thẳng AN, NC.
Bài 9: Cho góc xAy, trên tia Ax lấy hai điểm D và E, trên tia Ay lấy hai điểm F và G sao cho FD song song với EG. Đường thẳng qua G song song với FE cắt tia Ax tại H. Chứng minh AE 2 = AD.AH.
Bài 10: Cho hình bình hành ABCD. Gọi E là một điểm bất kì trên cạnh AB. Qua E kẻ đường thẳng song song với AC cắt BC ở F và kẻ đường thẳng song song với BD cắt AD ở H. Đường thẳng kẻ quá F song song với BD cắt CD ở G. Chứng minh AH.CD = AD.CG.
Cho tam giác ABC , đường trung tuyến AM.Qua điểm D thuộc cạnh BC,vẽ đường thẳng song song với AM,cắt AB và AC theo thứ tự ở E và F
a, Chứng minh rằng khi điểm D chuyển động trên cạnh BC thì tổng DE+DF có giá trị không đổi
b, Qua A vẽ đường thẳng song song với BC,cắt EF ở K.Chứng minh rằng K là trung điểm của EF