Ta có:
\(\sum\left(n+1\right)n^2=\sum\left(n^2+n^3\right)=\sum n^2+\sum n^3=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}+\dfrac{n^2\left(n+1\right)^2}{4}\)
\(\Rightarrow\lim\dfrac{2.1^2+3.2^2+...+\left(n+1\right)n^2}{n^4}=\lim\dfrac{n\left(n+1\right)\left(2n+1\right)}{6n^4}+\lim\dfrac{n^2\left(n+1\right)^2}{4n^4}\)
\(=\dfrac{2}{6}+\dfrac{1}{4}=\dfrac{7}{12}\)