Đặt \(S=\dfrac{1}{\sqrt{n^3+1}}+\dfrac{1}{\sqrt{n^3+2}}+...+\dfrac{1}{\sqrt{n^3+n}}\)
\(n^3+n>...>n^3+2>n^3+1\)
\(\Rightarrow\dfrac{n}{\sqrt{n^3+n}}< S< \dfrac{n}{\sqrt{n^3+1}}\)
Mà \(\lim\left(\dfrac{n}{\sqrt{n^3+1}}\right)=\lim\left(\dfrac{n}{\sqrt{n^3+n}}\right)=0\)
\(\Rightarrow\lim\left(S\right)=0\)