\(=x^3+3x^2y+3xy^2+y^3-x\left(x^2+6xy+9y^2\right)+y\left(9x^2-6xy+y^2\right)\)
\(=x^3+3x^2y+3xy^2+y^3-x^3-6x^2y-9xy^2+9x^2y-6xy^2+y^3\)
\(=12x^2y-12xy^2+2y^3\)
\(=x^3+3x^2y+3xy^2+y^3-x\left(x^2+6xy+9y^2\right)+y\left(9x^2-6xy+y^2\right)\)
\(=x^3+3x^2y+3xy^2+y^3-x^3-6x^2y-9xy^2+9x^2y-6xy^2+y^3\)
\(=12x^2y-12xy^2+2y^3\)
Tính
a) \(\left(x+3\right).\left(x^2-3x+9\right)-x.\left(x-2\right)\left(x+2\right)\)
b) \(\left(x+y\right)^3-x.\left(x+3y\right)^2+y\left(y-3x\right)^2\)
Phân tích đa thức sau thành nhân tử :
\(x^3+y\left(1-3x^2\right)+x\left(3y^2-1\right)-y^3\)
Tinh
a) \(\left(x+y\right)^3+\left(y-x\right)^3\)
b) \(\left(x+3\right).\left(x^2-3x+9\right)-x.\left(x-2\right).\left(x+2\right)\)
Giải hệ phương trình: \(\begin{cases}\frac{y^2\left(y^2-x\right)+\sqrt{y^2+2}}{-x^2-x+2}=\frac{1}{\sqrt{x+3}-x-1}\\3y^4+y^2-\left(2x+4\right)\sqrt{3x^2+x+1}=0\end{cases}\)
rút gọn
a)\(\left(7x-8\right).\left(7x+8\right)-10.\left(2x+3\right)^2+5x.\left(3x-2\right)^24x.\left(x-5\right)^2\)
b) \(\left(3x+7\right)^3-\left(5x-y\right).\left(25x^2+5xy+y^2\right)+\left(x+2y\right)^3\)
Rút gọn
a) \(x.\left(x+4\right).\left(x-4\right)-\left(x^2+1\right).\left(x-1\right)\)
b) \(\left(y-3\right).\left(y+3\right).\left(y^2+9\right)-\left(y^2+2\right).\left(y^2-2\right)\)
Rút gọn
\(\left(3x+y\right)^3-\left(5x-y\right).\left(25x^2+5xy+y^2\right)+\left(x+2y\right)^3\)
Tính C = \(13x^5-3y^3+2017\) tại x, y thỏa \(\left|x-1\right|+\left(y+2\right)^{2016}=0\)
Rút gọn:
\(\left(\frac{1}{x^2-xy}-\frac{3y^2}{x^4-xy^3}-\frac{y}{x^3+x^2y}\right).\left(y+\frac{x^2}{x+y}\right)\)