Lời giải:
a)
\(A=2^6+2^8+...+2^{98}+2^{100}\)
\(\Rightarrow 2^2A=2^8+2^{10}+...+2^{100}+2^{102}\)
Trừ theo vế:
\(4A-A=(2^8+2^{10}+..+2^{100}+2^{102})-(2^6+2^8+...+2^{98}+2^{100})\)
\(3A=2^{102}-2^6\)
\(\Rightarrow A=\frac{2^{102}-2^6}{3}\)
b)
\(A=2^6+2^8+2^{10}+...+2^{98}+2^{100}\)
\(A=(2^6+2^8)+(2^{10}+2^{12})+...+(2^{98}+2^{100})\)
\(=2^6(1+2^2)+2^{10}(1+2^2)+...+2^{98}(1+2^2)\)
\(=5.2^6+5.2^{10}+...+5.2^{98}=5(2^6+2^{10}+...+2^{98})\vdots 5\)
Ta có đpcm.