Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
SuSu

Tính tổng:

\(B=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}\)

Làm theo hướng dẫn: \(\dfrac{1}{k\left(k+1\right)\left(k+2\right)}=\dfrac{1}{2}\left(\dfrac{1}{k}+\dfrac{1}{k+2}\right)-\dfrac{1}{k+1}\)

Nguyễn Lê Phước Thịnh
27 tháng 11 2022 lúc 14:06

\(B=\dfrac{1}{2}\left(\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+...+\dfrac{2}{n\left(n+1\right)\left(n+2\right)}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{n\cdot\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{n^2+3n+2-2}{2\left(n+1\right)\left(n+2\right)}=\dfrac{n\left(n+3\right)}{4\left(n+1\right)\left(n+2\right)}\)


Các câu hỏi tương tự
SuSu
Xem chi tiết
SuSu
Xem chi tiết
SuSu
Xem chi tiết
Luân Đào
Xem chi tiết
Hồ Quế Ngân
Xem chi tiết
Thu Hà Nguyễn
Xem chi tiết
Trần Ích Bách
Xem chi tiết
Bướm Đêm Sát Thủ
Xem chi tiết
Dương Kim Chi
Xem chi tiết