\(V=\pi\int\limits^4_0\left(\dfrac{e^x}{4}\right)^2dx=\pi\int\limits^4_0\dfrac{e^{2x}}{16}dx=\dfrac{\pi}{32}.e^{2x}|^4_0=\dfrac{\pi}{32}\left(e^8-1\right)\)
\(V=\pi\int\limits^4_0\left(\dfrac{e^x}{4}\right)^2dx=\pi\int\limits^4_0\dfrac{e^{2x}}{16}dx=\dfrac{\pi}{32}.e^{2x}|^4_0=\dfrac{\pi}{32}\left(e^8-1\right)\)
Tính thể tích khối tròn xoay sinh ra do hình phẳng giới hạn bởi các đường by=x^2/4, y=2x quay quanh Ox
Tính thể tích khối tròn xoay sinh ra do hình phẳng giới hạn bởi các đường y=x^2-3x+2;y=x+2 quay quanh ox
Tính diện tích hình phẳng giới hạn bởi y=(x+1)*e^x , trục hoành và các đường thẳng x=-2,x=0
Tính diện tích mặt phẳng giới hạn bởi y=(x-1)(x-2)(x-3) và trục hoành
Trong không gian oxyz, cho mặt cầu (S) : (x - 3)2 + (y + 2)2 + (Z + 1)2 = 9. Viết phương trình mặt phẳng P đi qua điểm M (-1, -2, -3) cắt mặt cầu (S) theo đường tròn có bán kính nhỏ nhất
Cho hình chóp SABC , đáy ABC là tam giác vuông cân AB=AC=a, SC⊥(ABC), SC=a, Mặt phẳng qua C vuông góc với SB cắt SA,SB tại E và F. Tính VSCEF.
hình chóp SABCD, ABCD là hình bình hành, trên SA,SB,SC,SD lấy E,F,G,H sao cho \(\dfrac{SE}{SA}=\dfrac{SG}{SC}=\dfrac{1}{3}\); \(\dfrac{SF}{SB}=\dfrac{SH}{SD}=\dfrac{2}{3}\). Tính \(\dfrac{V_{EFGH}}{V_{SABCD}}\)