Pt hoành độ giao điểm:
\(\dfrac{x^2}{4}=2x\Rightarrow\left[{}\begin{matrix}x=0\\x=8\end{matrix}\right.\)
\(\Rightarrow V=\pi\left(\int\limits^8_0\left(2x\right)^2dx-\int\limits^8_0\left(\dfrac{x^2}{4}\right)^2dx\right)=\dfrac{4096\pi}{15}\)
Pt hoành độ giao điểm:
\(\dfrac{x^2}{4}=2x\Rightarrow\left[{}\begin{matrix}x=0\\x=8\end{matrix}\right.\)
\(\Rightarrow V=\pi\left(\int\limits^8_0\left(2x\right)^2dx-\int\limits^8_0\left(\dfrac{x^2}{4}\right)^2dx\right)=\dfrac{4096\pi}{15}\)
Tính thể tích khối tròn xoay sinh ra do hình phẳng giới hạn bởi các đường y=e^x/4, trục ox, x=0,x=4 quay quanh ox
Tính thể tích khối tròn xoay sinh ra do hình phẳng giới hạn bởi các đường y=x^2-3x+2;y=x+2 quay quanh ox
Tính diện tích hình phẳng giới hạn bởi y=(x+1)*e^x , trục hoành và các đường thẳng x=-2,x=0
Tính diện tích mặt phẳng giới hạn bởi y=(x-1)(x-2)(x-3) và trục hoành
Trong không gian oxyz, cho mặt cầu (S) : (x - 3)2 + (y + 2)2 + (Z + 1)2 = 9. Viết phương trình mặt phẳng P đi qua điểm M (-1, -2, -3) cắt mặt cầu (S) theo đường tròn có bán kính nhỏ nhất
Cho hình chóp SABC , đáy ABC là tam giác vuông cân AB=AC=a, SC⊥(ABC), SC=a, Mặt phẳng qua C vuông góc với SB cắt SA,SB tại E và F. Tính VSCEF.
hình chóp SABCD, ABCD là hình bình hành, trên SA,SB,SC,SD lấy E,F,G,H sao cho \(\dfrac{SE}{SA}=\dfrac{SG}{SC}=\dfrac{1}{3}\); \(\dfrac{SF}{SB}=\dfrac{SH}{SD}=\dfrac{2}{3}\). Tính \(\dfrac{V_{EFGH}}{V_{SABCD}}\)