rút gọn:
\(\left(5+\sqrt{21}\right)\left(\sqrt{14}-\sqrt{6}\right)\sqrt{5-\sqrt{21}}\)
Gỉai giúp mk vs
\(\sqrt{21-6\sqrt{6}}\)
\(\sqrt{14-6\sqrt{5}}+\sqrt{14+6\sqrt{5}}\)
\(\left(3-\sqrt{2}\right)\sqrt{7+4\sqrt{3}}\)
\(\sqrt{13+4\sqrt{10}}+\sqrt{13-4\sqrt{10}}\)
\(\sqrt{6}\left(\sqrt{26+15\sqrt{3}}+\sqrt{26-15\sqrt{3}}\right)\)
Bài 1:
1.\(\sqrt{2-\sqrt{3}}\)
2.\(\sqrt{3+\sqrt{5}}\)
3.\(\sqrt{21-6\sqrt{6}}\)
4.\(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\)
5.\(\left(2-\sqrt{3}\right)\sqrt{7+4\sqrt{3}}\)
6.\(\sqrt{13+4\sqrt{10}}+\sqrt{13-4\sqrt{10}}\)
\(\left(\sqrt{6}-\sqrt{5}\right)^2-\sqrt{11+2\sqrt{30}}\)
\(\sqrt{8+2\sqrt{15}}-\sqrt{8-2\sqrt{15}}\)
\(\sqrt{11+4\sqrt{7}}-\sqrt{14-6\sqrt{5}}\)
\(\sqrt{22-12\sqrt{2}}-\sqrt{19+6\sqrt{2}}\)
\(\sqrt{-6\sqrt{3}+12}+\sqrt{-12\sqrt{3}+21}\)
so sánh ; a. \(\sqrt{7}+\sqrt{15}và7\)
b. \(\sqrt{21}-\sqrt{5}và\sqrt{20}-\sqrt{6}\)
c. \(\sqrt{27}+\sqrt{6}+1và\sqrt{48}\)
Rút gọn
a) \(A=\left(\frac{\sqrt{10}-\sqrt{5}}{\sqrt{8}-2}-\frac{\sqrt{90}}{3}\right).\frac{1}{\sqrt{5}}\)
b) \(B=\left(\frac{\sqrt{26}-\sqrt{13}}{1-\sqrt{2}}+\frac{\sqrt{18}-\sqrt{6}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{13}-\sqrt{6}}\)
c) \(C=\frac{\sqrt{10+2\sqrt{21}}-\sqrt{5-2\sqrt{6}}}{\sqrt{9-2\sqrt{14}}}\)
1) \(\sqrt{4-\sqrt{15}}\) +\(\sqrt{5-\sqrt{21}}\)+\(\sqrt{6-\sqrt[]{35}}\)+\(\sqrt{6}\)
Giúp mình với ạ... Mình cảm ơn nhiều ạ :))
thực hiện phép tính
A=\(\dfrac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{1}{\sqrt{2-\sqrt{2-\sqrt{3}}}}\)
B=\(\dfrac{6+4\sqrt{2}}{\sqrt{2+\sqrt{6+4\sqrt{2}}}}+\dfrac{6-4\sqrt{2}}{\sqrt{2}-\sqrt{6-4\sqrt{2}}}\)
Rút gọn:
a.\(\sqrt{21-6\sqrt6}+\sqrt{9+2\sqrt{18}}-2\sqrt{6+3\sqrt{3}}\)
b.\(\sqrt{4+\sqrt{15}}-\sqrt{7-3\sqrt{5}}\)
c.\(\sqrt{\dfrac{13}{4}+\sqrt{3}}\)\(-\sqrt{\dfrac{7}{4}-\sqrt{3}}\)