Tính số gia của hàm số y= \(\dfrac{x^2}{2}\) tại điểm x0 =-1 ứng với số gia Δx
Tính dạo hàm của các hàm số bằng định nghĩa Y=3x^2+2 tại x0=0 Y= x^3+2x-1 tại x0=0
Tính dạo hàm của các hàm số bằng định nghĩa Y=3x^2+2 tại x0=0 Y= x^3+2x-1 tại x0=0 E đang cần gấp ah
Cho hàm số y = f(x) = ax4 + bx3 + cx2 + dx + e (a≠0) có đồ thị (C) cắt trục hoành tại bốn điểm phân biệt là A(x1; 0), B(x2 ; 0), C(x3 ; 0), D(x4;0), với x1, x2, x3, x4 theo thứ tự lập thành cấp số cộng và hai tiếp tuyến của (C) tại A, B vuông góc với nhau. Tính giá trị của biếu thức S = (f ' (x3) + f ' (x4))2020
dùng định nghĩa tính đạo hàm của các hàm số sau tạo điểm đc chỉ ra :
a, y= \(2x^2-x+2\) tại x0 =1
b,y=\(\sqrt{3-2x}\) tại x0=-3
c, y= sinx tại x0= \(\frac{\pi}{6}\)
d, y=\(\sqrt[3]{x}\) tại x0=1
e,y= \(\frac{2x+1}{x-1}\) tại x0=2
Cho hàm số y = \(-x^2+3x-2\) có đồ thị (P)
a,Tính đạo hàm của hàm số tại điểm \(y^'\) \(x_0\) thuộc R
b,Viết phương trình tiếp tuyến của (P) tại điểm có hoành độ \(x_0\)=2
c,Viết phương trình tiếp tuyến của (P) tại điểm có tung độ \(y_0\)=0
d,Viết phương trình tiếp tuyến của (P), biết tiếp tuyến vuông góc với đường thắng \(y^'=x+3\)
Cho hàm số \(y=\dfrac{3x-1}{x-1}\) và điểm I(1;3) Tìm các tiếp tuyến của đồ thị hàm số biết tiếp tuyến đó cắt 2 đường thẳng x=1 và y=3 tạo thành 2 điểm A,B sao cho tam giác IAB cân tại I
Cho hàm số \(y=x-\dfrac{1}{x}\) . Tìm điểm M thuộc đồ thị hàm số sao cho khoảng cách từ gốc tọa độ đến tiếp tuyến tại M bằng \(\dfrac{1}{2}\)
Tính (bằng định nghĩa) đạo hàm của mỗi hàm số sau tại các điểm đã chỉ ra :
a) \(y=x^2+x\) tại \(x_0=1\)
b) \(y=\dfrac{1}{x}\) tại \(x_0=2\)
c) \(y=\dfrac{x+1}{x-1}\) tại \(x_0=0\)