Bài 1: Định nghĩa và ý nghĩa của đạo hàm

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Minh Nguyệt

Cho hàm số y = f(x) = ax4 + bx3 + cx2 + dx + e (a≠0) có đồ thị (C) cắt trục hoành tại bốn điểm phân biệt là A(x1; 0), B(x2 ; 0), C(x3 ; 0), D(x4;0), với x1, x2, x3, x4 theo thứ tự lập thành cấp số cộng và hai tiếp tuyến của (C) tại A, B vuông góc với nhau. Tính giá trị của biếu thức S = (f ' (x3) + f ' (x4))2020

Nguyễn Việt Lâm
14 tháng 12 2020 lúc 23:28

Do \(f\left(x\right)=ax^4+bx^3+cx^2+dx+e\) có 4 nghiệm pb \(x_1;x_2;x_3;x_4\)

\(\Rightarrow f\left(x\right)=a\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)\left(x-x_4\right)\)

Ta có:

\(f'\left(x\right)=a\left[\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)+\left(x-x_2\right)\left(x-x_3\right)\left(x-x_4\right)+\left(x-x_1\right)\left(x-x_3\right)\left(x-x_4\right)+\left(x-x_1\right)\left(x-x_2\right)\left(x-x_4\right)\right]\)

\(\Rightarrow\left\{{}\begin{matrix}f'\left(x_1\right)=a\left(x_1-x_2\right)\left(x_1-x_3\right)\left(x_1-x_4\right)\\f'\left(x_2\right)=a\left(x_2-x_1\right)\left(x_2-x_3\right)\left(x_2-x_4\right)\\f'\left(x_3\right)=a\left(x_3-x_1\right)\left(x_3-x_2\right)\left(x_3-x_4\right)\\f'\left(x_4\right)=a\left(x_4-x_1\right)\left(x_4-x_2\right)\left(x_4-x_3\right)\end{matrix}\right.\)

Mà tiếp tuyến tại A và B vuông góc \(\Leftrightarrow f'\left(x_1\right).f'\left(x_2\right)=-1\) (1)

Do \(x_1;x_2;x_3;x_4\) lập thành 1 CSC, giả sử công sai của CSC là \(d\)

\(\Rightarrow\left\{{}\begin{matrix}x_2=x_1+d\\x_3=x_1+2d\\x_4=x_1+3d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}f'\left(x_1\right)=a.\left(-d\right).\left(-2d\right).\left(-3d\right)=-6ad^3\\f'\left(x_2\right)=a.d.\left(-d\right).\left(-2d\right)=2ad^3\\f'\left(x_3\right)=a.2d.d.\left(-d\right)=-2ad^3\\f'\left(x_4\right)=a.3d.2d.d=6ad^3\end{matrix}\right.\)

Thế vào (1): \(-12a^2d^6=-1\Leftrightarrow12a^2d^6=1\)

\(\Rightarrow f'\left(x_3\right)+f'\left(x_4\right)=4ad^3\)

\(\Rightarrow S=\left(4ad^3\right)^{2020}=\left(16a^2d^6\right)^{1010}=\left(\dfrac{4}{3}.12a^2d^6\right)^{1010}=\left(\dfrac{4}{3}\right)^{1010}\)

Bài gì mà dễ sợ :(

Minh Nguyệt
14 tháng 12 2020 lúc 23:43

undefined

Nguyễn Việt Lâm
15 tháng 12 2020 lúc 0:06

Đầu tiên xác định cụ thể pt (P) ra:

(P) qua điểm \(\left(0;-3\right)\Rightarrow c=-3\)

Từ độ độ đỉnh: \(\left\{{}\begin{matrix}-\dfrac{b}{2a}=2\\\dfrac{4ac-b^2}{4a}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=-4a\\-12a-16a^2=4a\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=4\end{matrix}\right.\)

\(\Rightarrow y=-x^2+4x-3\)

\(\Rightarrow y'=-2x+4\)

Gọi giao điểm của \(d_1;d_2\) là A và giao điểm của \(d_1;d_2\) với Ox lần lượt là B và C \(\Rightarrow\Delta ABC\) vuông cân tại A (\(y'=-2x+4\) nên (P) không thể tồn tại 1 tiếp tuyến vuông góc trục hoành dạng \(x=k\) do đó 2 tiếp tuyến ko bao giờ vuông góc với Ox)

\(\Rightarrow AB\) tạo với trục hoành 1 góc 45 độ

\(\Rightarrow\) Hệ số góc của đường thẳng \(d_1\) là \(k=tan45^0=1\)

\(\Rightarrow y'=-2x+4=1\Rightarrow x=\dfrac{3}{2}\)

\(\Rightarrow y=\dfrac{3}{4}\)

Phương trình \(d_1\)\(y=1\left(x-\dfrac{3}{2}\right)+\dfrac{3}{4}\Leftrightarrow y=x-\dfrac{3}{4}\)


Các câu hỏi tương tự
B.Trâm
Xem chi tiết
Phú Phạm Minh
Xem chi tiết
An Hoài Nguyễn
Xem chi tiết
Thảo Phi
Xem chi tiết
Châu Ngọc Minh Anh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
09 Lê Quang HIếu
Xem chi tiết
B.Trâm
Xem chi tiết
Vân Trang
Xem chi tiết