\(S=2^{2010}-2^{2009}-...-2-1\)
\(2S=2^{2011}-2^{2010}-2^{2009}-....-2^2-2\)
Trừ dưới cho trên:
\(S=2^{2011}-2.2^{2010}+1=2^{2011}-2^{2011}+1=1\)
\(S=2^{2010}-2^{2009}-...-2-1\)
\(2S=2^{2011}-2^{2010}-2^{2009}-....-2^2-2\)
Trừ dưới cho trên:
\(S=2^{2011}-2.2^{2010}+1=2^{2011}-2^{2011}+1=1\)
tinh:
S = \(2^{2010}-2^{2009}-2^{2008}-...-2-1\)
Tính: A = (1- 1/2)(1-1/3)(1-1/4)...(1-1/2016)(1-1/2017)
S= 2^2010 - 2^2009 - 2^2008 - ... - 2 - 1
T=2^2010-(2^2009+2^2008+...+2^1+2^0)
2^2010-(2^2009+2^2008+2^2007+......+2^1+2^0)
Cho H=\(2^{2010}-2^{2009}-2^{2008}-...-2-1\) .Tính \(2010^H\)
M = 22010 - ( 22009 + 22008 + ......................... + 21 + 20 )
x-1/2011+x-2/2010-x-3/2009=x-4/2008
thực hiện phép tính
s = 2\(^{2010}\) - 2\(^{2009}\) - 2\(^{2008}\) - ... -2 -1
Thực hiện phép tính :
a, \(S=2^{2010}-2^{2009}-2^{2008}-...-2-1\)
b, \(P=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+...+\frac{1}{16}\left(1+2+3+...+16\right)\)