Chương 3: NGUYÊN HÀM. TÍCH PHÂN VÀ ỨNG DỤNG

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Luân Trần

Tính nguyên hàm \(\int\dfrac{1}{x^3+x}dx\)

Hoàng Tử Hà
15 tháng 3 2021 lúc 18:17

\(\int\dfrac{dx}{x^3+x}=\int\dfrac{dx}{x\left(x^2+1\right)}\)

\(t=x^2+1\Rightarrow dt=2xdx\Rightarrow\int\dfrac{dx}{x\left(x^2+1\right)}=\int\dfrac{dt}{2x^2t}=\dfrac{1}{2}\int\dfrac{dt}{\left(t-1\right).t}\)

\(\dfrac{1}{\left(t-1\right).t}=\dfrac{1}{t-1}-\dfrac{1}{t}\)

\(\Rightarrow\int\dfrac{dt}{\left(t-1\right)t}=\int\left(\dfrac{1}{t-1}-\dfrac{1}{t}\right)dt=\int\dfrac{dt}{t-1}-\int\dfrac{dt}{t}=ln\left|t-1\right|-ln\left|t\right|=ln\left|x^2\right|-ln\left|x^2+1\right|\)


Các câu hỏi tương tự
Nguyễn Hải Vân
Xem chi tiết
Phương Anh Đỗ
Xem chi tiết
Luân Trần
Xem chi tiết
Hoang Khoi
Xem chi tiết
Eren
Xem chi tiết
Luân Trần
Xem chi tiết
Kamato Heiji
Xem chi tiết
Luân Trần
Xem chi tiết
Thụy An
Xem chi tiết