Đặt \(A=2^{2009}+2^{2008}+...+2^1+2^0.\)
Ta có : \(2A=2^{2010}+2^{2009}+...+2^2+2^1.\)
Suy ra : \(2A-A=2^{2010}-2^0\Rightarrow A=2^{2010}-1.\)
Do đó \(M=2^{2010}-A=2^{2010}-\left(2^{2010}-1\right)=1.\)
Đặt A=22009+22008+...+21+20.A=22009+22008+...+21+20.
Ta có : 2A=22010+22009+...+22+21.2A=22010+22009+...+22+21.
Suy ra : 2A−A=22010−20⇒A=22010−1.2A−A=22010−20⇒A=22010−1.
Do đó M=22010−A=22010−(22010−1)=1.