\(=lim\left[n\left(1-\sqrt{4+\frac{1}{n}}\right)\right]=+\infty.\left(-1\right)=-\infty\)
\(=lim\left[n\left(1-\sqrt{4+\frac{1}{n}}\right)\right]=+\infty.\left(-1\right)=-\infty\)
Tính các giới hạn sau:
\(lim\sqrt{n}\left(\sqrt{n+1}-n\right)\)
\(lim\dfrac{\sqrt{4n^2+1}+2n-1}{\sqrt{n^2+4n+1}+n}\)
Tính các giới hạn sau
1,Lim\(\left(\dfrac{2n^3}{2n^2+3}+\dfrac{1-5n^2}{5n+1}\right)\)
2,a,Lim\(\left(\sqrt{n^2+n}-\sqrt{n^2+2}\right)\)
b,Lim\(\dfrac{\sqrt{n^4+3n-2}}{2n^2-n+3}\)
c,Lim\(\dfrac{\sqrt{n^2-4n}-\sqrt{4n^2+1}}{\sqrt{3n^2+1}-n}\)
tính các giới hạn sau:
a) lim (3n2+n2-1)
b)lim \(\dfrac{n^3+3n+1}{2n-n^3}\)
c) lim \(\dfrac{-2n^3+3n+1}{n-n^2}\)
d) lim \(\left(n+\sqrt{n^2-2n}\right)\)
e) lim \(\left(2n-3.2^n+1\right)\)
f) lim \(\left(\sqrt{4n^2-n}-2n\right)\)
g) lim \(\left(\sqrt{n^2+3n-1}-\sqrt[3]{n^3-n}\right)\)
Tìm các giới hạn sau:
a) \(lim\left(\sqrt{4n+1}-2\sqrt{n}\right)\)
b) \(lim\left(\sqrt{n^2+2n}-\sqrt{n^2-2n}-n\right)\)
c) \(lim\left(\sqrt{9^n-3^n}-4^n\right)\)
d) \(lim\left(3n^3+2n^2+n\right)\)
Tính:
A= \(lim\dfrac{n+1}{n^2+2n}\)
B= \(lim\left(-2n^3+n^2+2\right)\)
C= \(lim\dfrac{\sqrt{9n^2-n-1}}{4n-2}\)
D= \(lim\dfrac{3^n+5.4^n}{4^n+2^n}\)
biết \(lim\dfrac{\sqrt{\left(3-4n\right)^2+1}+an-1}{\sqrt{n^2+4n+1}+an}=2\). tìm a
Tìm \(lim\left(\sqrt{4n^2+n}-\sqrt{4n^2+2}\right)\)
lim\(\sqrt{n^{4^{ }}-n^2+1}\) +2n2
lim\(\sqrt{n^4-n^2+1}\) -2n2
lim \(\frac{3n^2+n-5}{2n^2+1}\)
lim\(\frac{\sqrt{9n^2-n}+1}{4n-2}\)
Tìm các giới hạn sau:
\(a,lim\left(\sqrt{4n^2+5n}-2n\right)\)
\(b,lim\left(\sqrt{2n+1}-\sqrt{n}\right)\)
lim \(\dfrac{\sqrt{n^2+1}+4n}{3n-2}\)