\(\lim\dfrac{\sqrt{\left(3-4n\right)^2+1}+an-1}{\sqrt{n^2+4n+1}+an}=\lim\dfrac{\sqrt{\left(\dfrac{3}{n}-4\right)^2+\dfrac{1}{n}}+a-\dfrac{1}{n}}{\sqrt{1+\dfrac{4}{n}+\dfrac{1}{n^2}}+an}\)
\(=\dfrac{4+a}{1+a}=2\Leftrightarrow4+a=2a+2\Rightarrow a=2\)
\(\lim\dfrac{\sqrt{\left(3-4n\right)^2+1}+an-1}{\sqrt{n^2+4n+1}+an}=\lim\dfrac{\sqrt{\left(\dfrac{3}{n}-4\right)^2+\dfrac{1}{n}}+a-\dfrac{1}{n}}{\sqrt{1+\dfrac{4}{n}+\dfrac{1}{n^2}}+an}\)
\(=\dfrac{4+a}{1+a}=2\Leftrightarrow4+a=2a+2\Rightarrow a=2\)
Tính các giới hạn sau
1,Lim\(\left(\dfrac{2n^3}{2n^2+3}+\dfrac{1-5n^2}{5n+1}\right)\)
2,a,Lim\(\left(\sqrt{n^2+n}-\sqrt{n^2+2}\right)\)
b,Lim\(\dfrac{\sqrt{n^4+3n-2}}{2n^2-n+3}\)
c,Lim\(\dfrac{\sqrt{n^2-4n}-\sqrt{4n^2+1}}{\sqrt{3n^2+1}-n}\)
Tính các giới hạn sau:
\(lim\sqrt{n}\left(\sqrt{n+1}-n\right)\)
\(lim\dfrac{\sqrt{4n^2+1}+2n-1}{\sqrt{n^2+4n+1}+n}\)
đặt \(a=lim\dfrac{3n^3-2n+1}{4n^4+2n+1}\). tìm \(lim\dfrac{an^3-\left(a+2\right)n^2+1}{4an^3-n^2+3n+3}\)
tính các giới hạn sau:
a) lim (3n2+n2-1)
b)lim \(\dfrac{n^3+3n+1}{2n-n^3}\)
c) lim \(\dfrac{-2n^3+3n+1}{n-n^2}\)
d) lim \(\left(n+\sqrt{n^2-2n}\right)\)
e) lim \(\left(2n-3.2^n+1\right)\)
f) lim \(\left(\sqrt{4n^2-n}-2n\right)\)
g) lim \(\left(\sqrt{n^2+3n-1}-\sqrt[3]{n^3-n}\right)\)
có bao nhiêu giá trị nguyên a để \(lim\dfrac{\sqrt{an^3+n^2+1}-n\sqrt{2n+1}}{\sqrt{4n^3+3n}}\le\sqrt{2}\)
đặt \(a=lim\dfrac{\sqrt{2n+1}}{\sqrt{n}+1}\). tìm giới hạn \(lim\dfrac{3-4an^2}{\left(an-2\right)^2}\)
lim\(\dfrac{\left(2-n\right)\left(3+2n^3\right)}{2n^2-1}\)
lim\(\dfrac{\left(\sqrt{4n^2+1}-2n\right)n}{\sqrt[3]{4-n^3}+n}\)
Tìm các giới hạn sau:
a) \(lim\left(\sqrt{4n+1}-2\sqrt{n}\right)\)
b) \(lim\left(\sqrt{n^2+2n}-\sqrt{n^2-2n}-n\right)\)
c) \(lim\left(\sqrt{9^n-3^n}-4^n\right)\)
d) \(lim\left(3n^3+2n^2+n\right)\)
Tính:
A= \(lim\dfrac{n+1}{n^2+2n}\)
B= \(lim\left(-2n^3+n^2+2\right)\)
C= \(lim\dfrac{\sqrt{9n^2-n-1}}{4n-2}\)
D= \(lim\dfrac{3^n+5.4^n}{4^n+2^n}\)