\(\dfrac{\sqrt{\dfrac{9}{4}-3^{-1}+2018^0}}{25\%+1\dfrac{1}{4}-1,3}-\dfrac{\left(\dfrac{-1}{2}\right)^2-\sqrt{\dfrac{4}{9}}+0,4}{0,6-\dfrac{2}{3}.\left(\dfrac{-1}{4}-\dfrac{1}{2}\right)}\)
Tính
a) \(2\sqrt{\dfrac{25}{16}}-3\sqrt{\dfrac{49}{36}}+4\sqrt{\dfrac{81}{64}}\)
b) \(\left(3\sqrt{2}\right)^2-\left(4\sqrt{\dfrac{1}{2}}\right)^2+\dfrac{1}{16}.\left(\sqrt{\dfrac{3}{4}}\right)^2\)
c) \(\dfrac{2}{3}\sqrt{\dfrac{81}{16}}-\dfrac{3}{4}\sqrt{\dfrac{64}{9}}+\dfrac{7}{5}.\sqrt{\dfrac{25}{196}}\)
1. Giải \(a,\sqrt{4}-\sqrt{9x}+\sqrt{25x}=8\) \(b,\sqrt{\dfrac{1}{4x}}+\sqrt{\dfrac{1}{9x}}-\sqrt{\dfrac{1}{36x}}=\dfrac{2}{3}\)
2. \(A=\dfrac{1}{\sqrt{1\cdot2018}}+\dfrac{1}{\sqrt{2\cdot2017}}+...+\dfrac{1}{\sqrt{k\left(2018-k+1\right)}}+...+\dfrac{1}{\sqrt{2018\cdot1}}\)
So sánh A với \(2\cdot\dfrac{2018}{2019}\)
3.Cho abc=201. Tính\(\dfrac{201a}{ab+201+a+201}+\dfrac{b}{cb+b+201}+\dfrac{c}{ac+c+1}\)
4.\(B=\left(\dfrac{1-x^3}{1-x}+x\right)\cdot\left(\dfrac{1+x^3}{1+x}-x\right)\) a, Rút gọn B b, tìm x để B=64
5. Tìm x: \(\left|x-2\right|-2\left|x+1\right|=3-2\left(1-2x\right)\)
So sánh hai số x và y
x=\(\left(1-\dfrac{1}{\sqrt{4}}\right)\left(1-\dfrac{1}{\sqrt{16}}\right)\left(1-\dfrac{1}{6\sqrt{36}}\right)\left(1-\dfrac{1}{\sqrt{64}}\right)\left(1-\dfrac{1}{\sqrt{100}}\right)\)
y=0,1
so sánh:
x = \(\left(1-\dfrac{1}{\sqrt{4}}\right)\left(1-\dfrac{1}{\sqrt{16}}\right)\left(1-\dfrac{1}{\sqrt{36}}\right)\left(1-\dfrac{1}{\sqrt{64}}\right)\left(1-\dfrac{1}{\sqrt{100}}\right)\) và y = \(\sqrt{20+0,25}\)
\(\dfrac{\sqrt{\dfrac{9}{4}}-3^{-1}+2018^0}{25\%+1\dfrac{1}{4}-1,3}-\dfrac{\left(\dfrac{-1}{2}\right)^2-\sqrt{\dfrac{4}{9}+0,4}}{0,6-\dfrac{2}{3}\left(\dfrac{-1}{4}-\dfrac{1}{2}\right)}\)
Nhớ giải chi tiết nha
1) \(\left(\dfrac{1}{3}\right)^{50}.90^{25}-\dfrac{2}{3}:4\)
2) \(10.\sqrt{0,01}.\sqrt{\dfrac{16}{9}}+\sqrt{49}-\dfrac{1}{6}.\sqrt{4}\)
Bài 1 :
a) Tính B = \(\dfrac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.35}-\dfrac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.\left(\sqrt{196}\right)^3}\)
b)Tìm x biết : \(\left|x-\dfrac{1}{3}\right|+\dfrac{4}{5}=\left|-3,2+\sqrt{\dfrac{4}{25}}\right|\)
c)Tính \(\left|3x+1\right|>4\)
1. Tính giá trị biểu thức sau bằng cách hợp lí
\(\dfrac{1-\dfrac{1}{\sqrt{49}}+\dfrac{1}{49}-\dfrac{1}{\left(7\sqrt{7}\right)^2}}{\dfrac{\sqrt{64}}{2}-\dfrac{4}{7}+\left(\dfrac{2}{7}\right)^2-\dfrac{4}{343}}\)