Cho x+y=1 \(\left(x,y\ne0\right)\)
chứng minh: \(\dfrac{x}{y^3-1}-\dfrac{y}{x^3-1}+\dfrac{z\left(x-y\right)}{x^2y^2+3}=0\)
Cho x+y=1 \(\left(x,y\ne0\right)\)
chứng minh: \(\dfrac{x}{y^3-1}-\dfrac{y}{x^3-1}+\dfrac{z\left(x-y\right)}{x^2y^2+3}\ne0\)
Cho ▲ABC vuông tại A, đường cao AH. Từ H kẻ \(HE\perp AB\left(E\in AB\right),HF\perp AC\left(F\in AC\right)\)
a) Tứ giác AEHF là hình gì? Vì sao?
b) Gọi M là điểm đối xứng với H qua F. Chứng minh tứ giác AEFM là hình bình hành.
c) Gọi N là điểm đối xứng với H qua E. Chứng minh \(BC^2=BN^2+CM^2+2HB.HC\)
1) Tính:
a) (x-2)(x2+3x+4)
b) (x-2)(x-x2+4)
c) (x2-1)(x2+2x)
d) (2x-1)(3x+2)(3-x)
e) (x+3)(x2+3x-5)
f) (xy-2)(x3-2x-6)
g) (5x3-x2+2x-3)(4x2-x+2)
2) tìm x:
a) 3x3-3x=0
b) x2-x+\(\frac{1}{4}=0\)
Cho phương trình : \(2m\left(x-3\right)+1=x-5\)
a, Tìm m để phương trình trên có nghiệm duy nhất.
HELPPP........! MÌNH ĐANG CẦN GẤP
a) Chứng minh rằng số đường chéo của đa giác lồi n cạnh bằng \(\frac{n\left(n-2\right)}{2}\)
b) Tính số cạnh của một đa giác biết rằng số đường chéo của nó gấp đôi số cạnh
Câu 1 : Cho 2 biểu thức :
P=\(\frac{2x-4}{x^2-4x+4}\)-\(\frac{1}{x-2}\)
Q= \(\frac{3x+15}{x^2-9}+\frac{1}{x+3}-\frac{2}{x-3}\)
a,Tính giá trị của biểu thức P và biểu thức Q tại x=2
b, Tìm x để P< 0
c, Với giá trị nào của x thì Q có giá trị nguyên
Câu 2 : Tính
a, \(\frac{20x^3}{11y^2}.\frac{55y^5}{15x}\)
b,\(\frac{5x-2}{2xy}-\frac{7x-4}{2xy}\)
Cho hình thoi ABCD có Â = 600, P là 1 điểm thuộc AB, N là giao điểm của DA và CP
a) CMR : AB2 = BP . DN
b) Gọi \(\left\{M\right\}\) = BN \(\cap\) DP. Tính số đo góc BMD
c) CM: PA . PB = PD . PM
Tìm điều kiện của x và rút gọn A
\(A=\frac{x}{x^2-25}-\frac{x-5}{x^2+5x}:\frac{2x-5}{x^2+5x}+\frac{x}{5-x}\)