Lời giải:
Áp dụng HĐT $(a-b)^3=a^3-3a^2b+3ab^2-b^3=a^3-3ab(a-b)-b^3$
\(x^3=2+\sqrt{3}-3\sqrt[3]{(2+\sqrt{3})(2-\sqrt{3})}x-(2-\sqrt{3})\)
\(\Leftrightarrow x^3=2\sqrt{3}-3x\)
\(\Leftrightarrow x^3+3x=2\sqrt{3}\)
\(y^3=\sqrt{5}+2-3\sqrt[3]{(\sqrt{5}+2)(\sqrt{5}-2)}y-(\sqrt{5}-2)\)
\(\Leftrightarrow y^3=4-3y\Leftrightarrow y^3+3y=4\)
Do đó:
\(A=(x-y)^3+3(x-y)(xy+1)=x^3-3xy(x-y)-y^3+3[xy(x-y)+(x-y)]\)
\(=x^3-y^3+3(x-y)=(x^3+3x)-(y^3+3y)=2\sqrt{3}-4\)