Bài 4. Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Buddy

Tính giá trị của mỗi biểu thức sau:

a) \(A = {x^4} - 2{{\rm{x}}^2}y - {x^2} + {y^2} + y\) biết \({x^2} - y = 6\)

b) \(B = {x^2}{y^2} + 2{\rm{x}}yz + {z^2}\) biết xy + z = 0.

a)

\(\begin{array}{l}A = {x^4} - 2{{\rm{x}}^2}y - {x^2} + {y^2} + y\\A = \left( {{x^4} - 2{{\rm{x}}^2}y + {y^2}} \right) + \left( {y - {x^2}} \right)\\A = {\left( {{x^2} - y} \right)^2} - \left( {{x^2} - y} \right)\\A = \left( {{x^2} - y} \right)\left( {{x^2} - y - 1} \right)\end{array}\)

Với \({x^2} - y = 6\) ta có:

\(A = 6.\left( {6 - 1} \right) = 30\)

Vậy A = 30

b) Ta có:

\(\begin{array}{l}B = {x^2}{y^2} + 2{\rm{x}}yz + {z^2}\\B = {\left( {xy} \right)^2} + 2{\rm{x}}yz + {z^2}\\B = {\left( {xy + z} \right)^2}\end{array}\)

Với xy + z = 0 nên:

\(B = {0^2} = 0\)

Vậy B = 0


Các câu hỏi tương tự
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết