a)
\(\begin{array}{l}A = {x^4} - 2{{\rm{x}}^2}y - {x^2} + {y^2} + y\\A = \left( {{x^4} - 2{{\rm{x}}^2}y + {y^2}} \right) + \left( {y - {x^2}} \right)\\A = {\left( {{x^2} - y} \right)^2} - \left( {{x^2} - y} \right)\\A = \left( {{x^2} - y} \right)\left( {{x^2} - y - 1} \right)\end{array}\)
Với \({x^2} - y = 6\) ta có:
\(A = 6.\left( {6 - 1} \right) = 30\)
Vậy A = 30
b) Ta có:
\(\begin{array}{l}B = {x^2}{y^2} + 2{\rm{x}}yz + {z^2}\\B = {\left( {xy} \right)^2} + 2{\rm{x}}yz + {z^2}\\B = {\left( {xy + z} \right)^2}\end{array}\)
Với xy + z = 0 nên:
\(B = {0^2} = 0\)
Vậy B = 0