Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
___Vương Tuấn Khải___

Tính giá trị của đa thức: P=\(x^3+x^2y-2x^2-xy-y^2+3y+x+2017\) với \(x+y=2\)

Akai Haruma
14 tháng 1 2018 lúc 0:37

Lời giải:

Ta có:

\(P=x^3+x^2y-2x^2-xy-y^2+3y+x+2017\)

\(P=x^2(x+y-2)-y(x+y)+3y+x+2017\)

\(P=x^2(x+y-2)-y(x+y)+(x+y)+2y+2017\)

\(P=x^2(2-2)-2y+2+2y+2017\)

\(P=2019\)


Các câu hỏi tương tự
Hòa Đình
Xem chi tiết
shanksboy
Xem chi tiết
Thành Tò Văn
Xem chi tiết
Nguyen Thi Phuong Anh
Xem chi tiết
nguyệt nguyễn
Xem chi tiết
Nguyễn Thị Phương Thảo
Xem chi tiết
Nguyễn Thị Phương Thảo
Xem chi tiết
Nguyễn Thị Phương Thảo
Xem chi tiết
Nguyễn Thị Phương Thảo
Xem chi tiết