Tính giá trị của biểu thức Q=\(\dfrac{2a+b}{a+2015}+\dfrac{2b+a}{b+2015}\left(vớia,b\ne2015\right)khia+b=2015\)
Bài 1: a) Cho \(A=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)...\left(\dfrac{1}{2015}-1\right)\left(\dfrac{1}{2016}-1\right)\). So sánh A với \(\dfrac{-1}{2015}\)
b) Cho biểu thức \(A=\dfrac{3x^3-x^2-3x+2015}{3x^4-x^3+3x+2014}\). Tính giá trị của biểu thức với x=\(\dfrac{1}{3}\)
Cho a, b, c >0 và dãy tỉ số \(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}\)
Tính giá trị của biểu thức P=\(\dfrac{\left(2a-b\right)\left(2b-c\right)\left(2c-a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)
a) Cho \(\dfrac{2bz-3cy}{a}=\dfrac{3cx-yz}{2b}=\dfrac{ay-2bx}{3c}\)
Chứng minh rằng \(x:y:z=a:2b:3c\) ( biết biểu thức có ý nghĩa )
b) Cho dãy tỉ số bằng nhau \(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=........=\dfrac{a_{2014}}{a_{2015}}\)
Chứng minh rằng \(\dfrac{a_1}{a_{2015}}=\left(\dfrac{a_1+a_2+a_3+.....+a_{2014}}{a_2+a_3+a_4+.......+a_{2015}}\right)^{2014}\) ( số 1-2015 là số thứ tự )
Tính
\(A=\left(\dfrac{1}{5}+\dfrac{2013}{2014}+\dfrac{2015}{2016}+1\right)\left(\dfrac{2013}{2014}+\dfrac{2015}{2016}+\dfrac{1}{10}\right)-\left(\dfrac{1}{5}+\dfrac{2013}{2014}+\dfrac{2015}{2016}\right)\left(\dfrac{2013}{2014}+\dfrac{2015}{2016}+\dfrac{1}{10}+1\right)\)
cho dãy tỉ số bằng nhau\(\dfrac{2a+b+c+d}{a}\) =\(\dfrac{a+2b+c+d}{b}\) =\(\dfrac{a+b+2c+d}{c}\)=\(\dfrac{a+b+c+2d}{d}\)
tính giá trị của biểu thức M= \(\dfrac{a+b}{c+d}=\dfrac{b+c}{d+a}=\dfrac{c+d}{a+b}=\dfrac{d+a}{b+c}\)
Cho a,b,c là các số khác 0 thỏa mãn \(\frac{a^{2015}}{b^{2017}+c^{2019}}\)=\(\frac{b^{2017}}{a^{2015}+c^{2019}}\)=\(\frac{c^{2019}}{a^{2015}+b^{2017}}\)
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của a,b,c
S=\(\frac{b^{2017}+c^{2019}}{a^{2015}}\)+\(\frac{a^{2015}+c^{2019}}{b^{2017}}\)+\(\frac{a^{2015}+b^{2017}}{c^{2019}}\)
Giúp với ạ
Cho abc \(\ne\) 0 và dãy tỉ số bằng nhau: \(\dfrac{5a+b+3c}{2a+c}=\dfrac{a+5b+c}{2b}=\dfrac{a+3b+3c}{b+c}\)
Tính: M = \(\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Bài 1: Tính:
\(a,\left(0,25\right)^3.32\) \(b,\left(0,125\right)^3.512\) \(c,\dfrac{8^2.4^5}{2^{20}}\) \(d,\dfrac{81^{11}.3^{17}}{27^{10}.9^{15}}\)
Bài 2: Tìm giá trị nhỏ nhất của các biểu thức sau:
\(a,A=\left|x-\dfrac{3}{4}\right|\) \(b,B=1,5+\left|2-x\right|\) \(c,A=\left|2x-\dfrac{1}{3}\right|+107\) \(d,M=5\left|1-4x\right|-1\)
Bài 3: Tìm giá trị lớn nhất của biểu thức sau:
\(a,C=-\left|x-2\right|\) \(b,D=1-\left|2x-3\right|\) \(c,D=-\left|x+\dfrac{5}{2}\right|\)
(mn giải giúp mk với, thanks mn nhìu!)