Tính giá trị của biểu thức: \(A=\dfrac{1-ax}{1+ax}\sqrt{\dfrac{1+bx}{1-bx}}\) với \(x=\dfrac{1}{a}.\sqrt{\dfrac{2a}{b}-1}\) (0<a<b<2a)
Tính giá trị của biểu thức: \(A=\dfrac{1-ax}{1+ax}\sqrt{\dfrac{1+bx}{1-bx}}\) với \(x=\dfrac{1}{a}.\sqrt{\dfrac{2a}{b}-1}\left(0< a< b< 2a\right)\)
Tính giá trị của biểu thức: \(A=\dfrac{1-ax}{1+ax}\sqrt{\dfrac{1+bx}{1-bx}}\) với \(x=\dfrac{1}{a}.\sqrt{\dfrac{2a}{b}-1}\left(0< a< b< 2a\right)\)
Rút gọn biểu thức: \(A=\dfrac{1-ax}{1+ax}\sqrt{\dfrac{1+bx}{1-bx}}\)với \(x=\dfrac{1}{a}\sqrt{\dfrac{2a-b}{b}}\)và 0 < a < b < 2a
Tìm giá trị lớn nhất của biểu thức: \(A=3\sqrt{2a-1}+a\sqrt{5-4a^2}\) với \(\dfrac{1}{2}\le a\le\dfrac{\sqrt{5}}{2}\)
Cho \(x=\dfrac{\sqrt{2}+1}{\sqrt{2}-1}\) là 1 nghiệm của phương trình: \(ax^2+bx+1\). Với a, b là các số hữu tỉ. Tìm a và b
Rút gọn :
B=\(\dfrac{2a\sqrt{1+x^2}}{\sqrt{1+x^2}-x}\) với x=\(\dfrac{1}{2}\left(\sqrt{\dfrac{1-a}{a}}-\sqrt{\dfrac{a}{1-a}}\right)\) và 0<a<1
Cho biểu thức : P = \(\left(\dfrac{1}{1-\sqrt{a}}-\dfrac{1}{1+\sqrt{a}}\right).\left(\dfrac{1}{\sqrt{a}}+1\right)\) với a >0 và a \(\ne\)1
a)Rút gọn biểu thức P b)Với những giá trị nảo của a thì P >\(\dfrac{1}{2}\)
cho hai biểu thức A=\(\dfrac{2\sqrt{x}-4}{\sqrt{x}-1}\) và B=\(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}\) với x\(\ge\)0, x\(\ne\)1
a.tính giá trị của A khi x=4
b.rút gọn B
c.so sánh A.B với 5