Ta có:
\(\sqrt{5-2x}=\sqrt{5-2.(3\sqrt{2}-3)}=\sqrt{5-6\sqrt{2}+6}\\ =\sqrt{11-6\sqrt{2}}=\sqrt{(3-\sqrt{2})^2}=3-\sqrt{2}\)
Ta có:
\(\sqrt{5-2x}=\sqrt{5-2.(3\sqrt{2}-3)}=\sqrt{5-6\sqrt{2}+6}\\ =\sqrt{11-6\sqrt{2}}=\sqrt{(3-\sqrt{2})^2}=3-\sqrt{2}\)
Cho x,y thỏa mãn: \(\sqrt{3+x^2}+x+\sqrt{3+y^2}+y=3\). Tính giá trị của BT: \(A=4x^2+xy+y^2+15\)
Cho \(x=\sqrt{\dfrac{2-\sqrt{3}}{2}}\) tính giá trị bt:
\(P=\left(2x^5+2x^4-x^3-1\right)^{2016}+\dfrac{\left(2x^3+2x^2-x-3\right)^{2017}}{2x^4+2x^3-x^2-3}\)
Cho số thực x,y thỏa mãn \(\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)=1\). Tính giá trị của
\(P=x^7+y^7+2x^5+2y^5-3x^3-3y^3+4x+4y+100\)
Tính giá trị biểu thức \(A=2x^3+2x^2+1\) với
\(x=\dfrac{1}{3}\left(\sqrt[3]{\dfrac{23+\sqrt{513}}{4}}+\sqrt[3]{\dfrac{23-\sqrt{513}}{4}}-1\right)\)
Giúp mình với các cao nhân
cho \(x=\dfrac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
\(y=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
tính giá trị bt: \(A=\dfrac{xy-1}{x+y}-\dfrac{1-xy}{2x-y}\)
cho A = \(\dfrac{\sqrt{x}+4}{\sqrt{x}+2x}\) và B = \(\dfrac{\sqrt{x}}{x-4}-\dfrac{2}{\sqrt{x}-2}\)
a, tính giá trị của biểu thức A khi x = 36
b, rút gọn biểu thức P = B : A
tính giá trị của biểu thức:
\(P=\left(2x^5+2x^4-x^3-1\right)^{2016}+\left(\sqrt{2x+2x-3x+3x+3}\right)^3+\dfrac{\left(2x^3+2x^2-x-3\right)^{2017}}{2x^4+2x^3-x^2-3^{2017}}\)
khi \(x=\sqrt{\dfrac{2-\sqrt{3}}{2}}\)
Tính giá trị của biểu thức: \(A=x^2-3x\sqrt{y}+2y\), khi \(x=\dfrac{1}{\sqrt{5}-2};y=\dfrac{1}{9+4\sqrt{5}}\)
Tính giá trị của biểu thức \(P=x^3+y^3-3\left(x+y\right)+2009\)
trong đó: \(x=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)
\(y=\sqrt[3]{17+12\sqrt{2}}+\sqrt[3]{17-12\sqrt{2}}\)