đặt biểu thức đã cho là A
Ta có : \(a^4+\dfrac{1}{4}\) \(=a^4+a^2+\dfrac{1}{4}-a^2\)
\(=\left(a^2+\dfrac{1}{2}\right)^2-a^2\)
\(=\left(a^2+a+\dfrac{1}{2}\right)\left(a^2-a+\dfrac{1}{2}\right)\)
Thay vào biểu thức đã cho ta được:
\(\dfrac{\left(1^2+1+\dfrac{1}{2}\right)\left(1^2-1+\dfrac{1}{2}\right)\left(3^2+3+\dfrac{1}{2}\right)\left(3^2-3+\dfrac{1}{2}\right)...\left(29^2+29+\dfrac{1}{2}\right)\left(29^2-29+\dfrac{1}{2}\right)}{\left(2^2+2+\dfrac{1}{2}\right)\left(2^2-2+\dfrac{1}{2}\right)\left(4^2+4+\dfrac{1}{2}\right)\left(4^2-4+\dfrac{1}{2}\right)...\left(30^2+30+\dfrac{1}{2}\right)\left(30^2-30+\dfrac{1}{2}\right)}\)
Lại có :
\(\left(k+1\right)^2-\left(k+1\right)+\dfrac{1}{2}\) \(=k^2+2k+1-k-1+\dfrac{1}{2}\)
\(=k^2+k+\dfrac{1}{2}\)
\(\dfrac{\left(1^2+1+\dfrac{1}{2}\right)\left(1^2-1+\dfrac{1}{2}\right)\left(3^2+3+\dfrac{1}{2}\right)\left(2^2+2+\dfrac{1}{2}\right)...\left(29^2+29+\dfrac{1}{2}\right)\left(28^2+28+\dfrac{1}{2}\right)}{\left(2^2+2+\dfrac{1}{2}\right)\left(1^2+1+\dfrac{1}{2}\right)\left(4^2+4+\dfrac{1}{2}\right)\left(3^2+3+\dfrac{1}{2}\right)...\left(30^2+30+\dfrac{1}{2}\right)\left(29^2+29+\dfrac{1}{2}\right)}\)
= \(\dfrac{1^2-1+\dfrac{1}{2}}{30^2+30+\dfrac{1}{2}}\)
= \(\dfrac{\dfrac{1}{2}}{30^2+30+\dfrac{1}{2}}\)