Áp dụng bài vừa chứng minh bên dưới :D
\(\Rightarrow P=2021\)
Áp dụng bài vừa chứng minh bên dưới :D
\(\Rightarrow P=2021\)
a)Cho a,b thuộc N* và b=a+1
Thu gọn biểu thức:
\(P=\sqrt{1+a^2+\frac{a^2}{b^2}}+\frac{a}{b}\)
b)Áp dụng:Tính giá trị biểu thức:
\(P=\sqrt{1+2020^2+\frac{2020^2}{2021^2}}+\frac{2020}{2021}\)
c)Tính tổng:
\(Q=\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+....+\sqrt{1+\frac{1}{2020^2}+\frac{1}{2021^2}}\)
Thu gọn biểu thức:
\(A=\frac{\sqrt{45+27\sqrt{2}}+\sqrt{45-27\sqrt{2}}}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}-\frac{\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}}{\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}}\)
\(B=\sqrt{\left(1-\sqrt{2020}\right)^2}.\sqrt{2021+2\sqrt{2020}}\)
\(C=\sqrt{\sqrt{3}-\sqrt{3-\sqrt{13-4\sqrt{3}}}}\)
CMR số \(\sqrt{2020^2+2020^2.2021^2+2021^2}\) là một số nguyên dương
a, cho x=\(\sqrt{2+\sqrt{3}}\) + \(\sqrt{2-\sqrt{3}}\) và y=\(\sqrt{7-2\sqrt{6}}\)
tính giá trị của biểu thức P=\(\left(x-y\right)^{2020}\)
b, tìm GTNN của B=\(x-\sqrt{x-2020}\)
cho bt C = \(\frac{x+\sqrt{x}+1}{\sqrt{x}-1}\)
tính các GT của C nếu x = 2021 - 2\(\sqrt{2020}\)
1)Cho tam giác ABC có AB=\(2\sqrt{2}\);AC=\(2\sqrt{3}\);và góc BAC =60 độ có diện tích bằng ?
2)Cho S=\(\frac{2020}{2\sqrt{1}+1\sqrt{2}}+\frac{2020}{3\sqrt{2}+2\sqrt{3}}+\frac{2020}{4\sqrt{3}+3\sqrt{4}}+...+\frac{2020}{2020\sqrt{2019}+2019\sqrt{2020}}\)
Tính S=?
=>giúp e vs các ac
I : Rút gọn
\(A=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{2019\sqrt{2020}+2020\sqrt{2019}}\)
help me !!!
Rút gọn biểu thức:
\(a,\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
\(b,\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{2019}+\sqrt{2020}}\)
Rút gọn biểu thức: M=\(\sqrt{x^2+2x+1}-\sqrt{1+x^2+\frac{x^2}{\left(x+1\right)^2}}\)
Tính giá trị của M khi x=2020