h1 ta có (R//(2Rnt2R))nt2R
=> Rtđ = \(\dfrac{R.\left(2R+2R\right)}{R+2R+2R}+R=\dfrac{2R^2+2R^2}{5R}+R=\dfrac{4R^2+5R^2}{5R}=\dfrac{9R^2}{5R}=\dfrac{9R}{5}=1,8R\)
Hình 2 : Ta có (R//(2RntR)nt2R)nt R
=> Rtđ =\(\dfrac{R.\left(2R+R\right)}{R+2R+R}+2R+R=\dfrac{2R^2+R^2}{4R}+3R=\dfrac{3R^2+12R^2}{4R}=\dfrac{15R^2}{4R}=\dfrac{15R}{4}=3,75R\)