\(\dfrac{5454}{5757}-\dfrac{171717}{191919}=\dfrac{18\cdot3\cdot101}{19\cdot3\cdot101}-\dfrac{17\cdot10101}{19\cdot10101}=\dfrac{18}{19}-\dfrac{17}{19}=\dfrac{1}{19}\)
\(\dfrac{5454}{5757}-\dfrac{171717}{191919}=\dfrac{18\cdot3\cdot101}{19\cdot3\cdot101}-\dfrac{17\cdot10101}{19\cdot10101}=\dfrac{18}{19}-\dfrac{17}{19}=\dfrac{1}{19}\)
cho biết tập hợp các giá trị của tham số để phương trình \(2\left(x^2+\dfrac{1}{x^2}\right)-3\left(x+\dfrac{1}{x}\right)-2m-1=0\)
có nghiệm là S = \(\left[\dfrac{-b}{a};+\infty\right]\)
với a, b là các số nguyên dương a/b là phân số tối giản. Tính a + b
\(\left(\sqrt{ab}-\sqrt{\dfrac{a}{b}}+\dfrac{1}{a}\sqrt{4ab}+\dfrac{1}{b}\sqrt{\dfrac{b}{a}}\right):\left(1+\dfrac{2}{a}-\dfrac{1}{b}+\dfrac{1}{ab}\right)\)
Rút gọn ( chi tiết 1 xíu nha)
bài 1 xét tính đồn biến và nghịch biến của các hàm số
a) y= -\(\dfrac{1}{x+1}\) trên (-3;-2) và (2;3)
bài 2 xác định tính chẵn lẻ của hàm số
a) y= \(\dfrac{x^5}{\left|x\right|^3-1}\)
b) y= \(\left|x+2\right|\)-\(\left|x-2\right|\)
c) y= \(\sqrt{x+1}\)+\(\sqrt{1-x}\)
d) y=\(\dfrac{x^4+2x^2+1}{x}\)
e) y= \(x^2\)+x+1
f) y=\(\left(x+2\right)^2\)
Giải phương trình \(1+\dfrac{2}{x-2}=\dfrac{-10}{x+3}+\dfrac{50}{\left(2-x\right)\left(x+3\right)}\)
1) Trong mat phang toa oxy, cho tam giac ABC co A(1;2); B(-1;1); C(5;-1). Tinh Cos A
A. \(\dfrac{-1}{\sqrt{5}}\) B.\(\dfrac{1}{\sqrt{5}}\) C. \(\dfrac{-2}{\sqrt{5}}\) D. \(\dfrac{2}{\sqrt{5}}\)
Tìm tất cả các giá trị thực của tham số m để hàm số y = x^2 - 5x + 7 + 2m cắt trục hoành tại 2 điểm phân biệt có hoành độ thuộc [1;5]. A. \(3\le m\le7\)B. \(\dfrac{3}{4}\le m\le7\)C. \(-\dfrac{7}{2}\le m\le-\dfrac{3}{8}\)D. \(\dfrac{3}{8}\le m\le\dfrac{7}{2}\)
giải pt
2x+\(\dfrac{3}{x-1}\)=\(\dfrac{3x}{x-1}\)
tìm tập xác định của các hàm số
y = \(\dfrac{\sqrt{2x-5}}{\left|x\right|-3}\)
y = \(\dfrac{\left|x\right|}{\sqrt{x-2}}+\dfrac{5x^2}{-x^2+6x-5}\)
y = \(\dfrac{2x}{\sqrt{x+1}}+\dfrac{3x}{x^2+1}\)
Tìm Tập xác định của các hàm số sau:
\(d.y=\dfrac{2x-1}{\sqrt{x\left|x\right|-4}}\\ e.y=\dfrac{x^2+2x+3}{\left|x^2-2x\right|+\left|x-1\right|}\\ f.y=\dfrac{\sqrt{x+2}}{x\left|x\right|+4}\\ g.y=\dfrac{\sqrt{x\left|x\right|+4}}{x}\)