Tính: a)
\(\dfrac{x^2-8x-5\sqrt{x^2-8x+10}+14}{\left(x+1\right)\left(\left(4+\sqrt{22}\right)—x\right)}\)= 0
b) \(\left\{{}\begin{matrix}x+108y=200\\100x-87y=113\end{matrix}\right.\). Tính \(\left(x^2-3y^2\right)^{2018}\).
c) \(\left\{{}\begin{matrix}x^2-y^2=0\\2018x+y=2019\end{matrix}\right.\)
Bài 1 : cho x1, x2, ....., x2019 > 0. Tìm GTNN của \(M=\dfrac{x_1^2+x_2^2+x_3^2+...+x_{2018}^2+x_{2019}^2}{\left(x_1+x_2+x_3+...+x_{2018}\right)\cdot x_{2019}}\)
Bài 2: cho x, y, z >0. tìm GTNN của \(A=4\cdot\left(x^2+y^2+z^2\right)+\dfrac{441}{x+2y+4z}\)
Chứng minh đẳng thức:
a) \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=\sqrt{xy}\left(x\ge0,y\ge0,x^2+y^2\ne0\right)\)
b) \(\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{a}-1}\right):\dfrac{\sqrt{a}+1}{a-2\sqrt{a}+1}\left(a\ge0,a\ne1\right)\)
c) \(\sqrt{x+2\sqrt{x-2}-1}\left(\sqrt{x-2}-1\right):\left(\sqrt{x}-\sqrt{3}\right)=\sqrt{x}+\sqrt{3}\left(x\ge2,x\ne3\right)\)
Cho biểu thức \(P=\dfrac{x}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)}-\dfrac{y}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+1\right)}-\dfrac{xy}{\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}\) Tìm các giá trị x, y, nguyên để P có giá trị bằng 2
cho x,y,z>0 và x+y+z=\(\sqrt{2}\). chứng minh rằng
\(A=\sqrt{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\left(\dfrac{\sqrt{y+z}}{x}+\dfrac{\sqrt{z+x}}{y}+\dfrac{\sqrt{x+y}}{z}\right)\ge4\sqrt{2}\)
Cho x,y,z>0 tm : \(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}+\sqrt{z}=2\\x+y+z=2\end{matrix}\right.\) .Tính:
P= \(\sqrt{\left(x+1\right).\left(y+1\right).\left(z+1\right)}.\left(\frac{\sqrt{x}}{x+1}+\frac{\sqrt{y}}{y+1}+\frac{\sqrt{z}}{z+1}\right)\)
chứng minh đẳng thức \(\dfrac{\sqrt{x}+\sqrt{y}}{2\left(\sqrt{x}-\sqrt{y}\right)}-\dfrac{\sqrt{x}-\sqrt{y}}{2\left(\sqrt{x+\sqrt{y}}\right)}-\dfrac{y+x}{y-x}=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
Cho x,y,z > 0 và xy+yz+zx=1. Tính
\(P=x.\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y.\sqrt{\dfrac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+\sqrt{\dfrac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
Giai phương trình 1) \(\left(\sqrt{x+1}-\sqrt{x-2}\right)\left(1+\sqrt{x^2-x-2}\right)=3\)
2) \(\sqrt{x+y-4}+\sqrt{x-y+4}+\sqrt{-x+y+4}=\sqrt{x}+\sqrt{y}+2\)