a) Ta có: \(D=\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)\cdot\left(-\sqrt{2}\right)\)
\(=-2+\sqrt{6-2\sqrt{5}}\)
\(=-2+\sqrt{5-2\cdot\sqrt{5}\cdot1+1}\)
\(=-2+\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=-2+\left|\sqrt{5}-1\right|\)
\(=-2+\sqrt{5}-1\)(Vì \(\sqrt{5}>1\))
\(=-3+\sqrt{5}\)
b) Ta có: \(2\sqrt{3}\left(\sqrt{27}+2\sqrt{48}\right)-\sqrt{75}\)
\(=2\sqrt{81}+4\sqrt{144}-5\sqrt{3}\)
\(=18+48-5\sqrt{3}\)
\(=66-5\sqrt{3}\)
c) Ta có: \(E=\left(\sqrt{10}+\sqrt{6}\right)\sqrt{8-2\sqrt{15}}\)
\(=\sqrt{2}\left(\sqrt{5}+\sqrt{3}\right)\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}\)
\(=\sqrt{2}\cdot\left(\sqrt{5}+\sqrt{3}\right)\cdot\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
\(=\sqrt{2}\cdot\left(\sqrt{5}+\sqrt{3}\right)\cdot\left|\sqrt{5}-\sqrt{3}\right|\)
\(=\sqrt{2}\cdot\left(\sqrt{5}+\sqrt{3}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\)(Vì \(\sqrt{5}>\sqrt{3}\))
\(=\sqrt{2}\cdot\left(5-3\right)\)
\(=2\sqrt{2}\)
d) Ta có: \(P=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)
\(=\sqrt{\frac{3}{2}+2\cdot\sqrt{\frac{3}{2}}\cdot\sqrt{\frac{1}{2}}+\frac{1}{2}}+\sqrt{\frac{3}{2}-2\cdot\sqrt{\frac{3}{2}}\cdot\sqrt{\frac{1}{2}}+\frac{1}{2}}\)
\(=\sqrt{\left(\sqrt{\frac{3}{2}}+\sqrt{\frac{1}{2}}\right)^2}+\sqrt{\left(\sqrt{\frac{3}{2}}-\sqrt{\frac{1}{2}}\right)^2}\)
\(=\left|\sqrt{\frac{3}{2}}+\sqrt{\frac{1}{2}}\right|+\left|\sqrt{\frac{3}{2}}-\sqrt{\frac{1}{2}}\right|\)
\(=\sqrt{\frac{3}{2}}+\sqrt{\frac{1}{2}}+\sqrt{\frac{3}{2}}-\sqrt{\frac{1}{2}}\)(Vì \(\sqrt{\frac{3}{2}}>\sqrt{\frac{1}{2}}>0\))
\(=2\sqrt{\frac{3}{2}}=\sqrt{4\cdot\frac{3}{2}}=\sqrt{6}\)
e) Ta có: \(M=-3\sqrt{50}+2\sqrt{98}-7\sqrt{72}\)
\(=\sqrt{2}\cdot\left(-3\cdot\sqrt{25}+2\cdot\sqrt{49}-7\cdot\sqrt{36}\right)\)
\(=\sqrt{2}\cdot\left(-15+14-42\right)\)
\(=-43\sqrt{2}\)