A=(99-98)(99+98)+...+(3-2)(3+2)+1
=99+98+...+3+2+1
=100*99/2=4950
A=(99-98)(99+98)+...+(3-2)(3+2)+1
=99+98+...+3+2+1
=100*99/2=4950
Tính giá trị biểu thức: \(A=\dfrac{x^{98}+x^{97}+x^{96}+...+x+1}{x^{32}+3^{31}+3^{30}+...+x+1}\)khi x=2
Bài 1: Tính giá trị biểu thức ( chỉ cần ghi kết quả)
a) Tính giá trị biểu thức: \(A=\dfrac{2^{98}+2^{97}+2^{96}+...+2+1}{2^{32}+2^{31}+2^{30}+...+2+1}\)
b) \(B=\dfrac{1}{\sqrt{1}+\sqrt{5}}+\dfrac{1}{\sqrt{2}+\sqrt{6}}+...+\dfrac{1}{\sqrt{2012}+\sqrt{2016}}+\dfrac{1}{\sqrt{2013}+\sqrt{2017}}\)
Cho A = \(\dfrac{\left(x^{98}+x^{97}+x^{96}+........x+1\right)}{x^{32}+x^{31}+..........+x+1}\)
a . Rút gọn A
b. Tính A khi x = 2
\(\left(100+\dfrac{99}{2}+\dfrac{98}{3}+\dfrac{97}{4}....+\dfrac{1}{100}\right):\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+....\dfrac{1}{100}\right)-2\)
Tính giá trị của biểu thức:
\(A=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+....+\dfrac{1}{97}+\dfrac{1}{99}}{\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.99}+....+\dfrac{1}{97.3}+\dfrac{1}{99.1}}\)
\(B=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+....+\dfrac{1}{99}+\dfrac{1}{100}}{\dfrac{99}{1}+\dfrac{98}{2}+\dfrac{97}{3}+....+\dfrac{1}{99}}\)
Tính tổng : S\(_1\) = \(1+3^2+5^2+7^2+....+97^2+99^2\)
S\(_2\) =\(2+4^2+6^2+8^2+.....+98^2+100^2\)
S\(_3\) = 1.2.3+2.3.4+3.4.5+....+97.98.99
tính (100+ 99/2 +98/3 +...+ 1/100) / (1/2 + 1/3 +1/4+...+ 1/101) -2
Tính tổng C=\(1-2^3+2^6-2^9+....+2^{96}-2^{99}\)
Tính \(\left(100+\dfrac{99}{2}+\dfrac{98}{3}+... +\dfrac{2}{99}+\dfrac{1}{100}\right):\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{101}\right)-2\)